Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Signal analysis performed during surface texture measurement frequently involves applying the Fourier transform. The method is particularly useful for assessing roundness and cylindrical profiles. Since the wavelet transform is becoming a common tool for signal analysis in many metrological applications, it is vital to evaluate its suitability for surface texture profiles. The research presented in this paper focused on signal decomposition and reconstruction during roundness profile measurement and the effect of these processes on the changes in selected roundness profile parameters. The calculations were carried out on a sample of 100 roundness profiles for 12 different forms of mother wavelets using MATLAB. The use of Spearman's rank correlation coefficients allowed us to evaluate the relationship between the two chosen criteria for selecting the optimal mother wavelet.

Go to article

Authors and Affiliations

Włodzimierz Makieła
Stanisław Adamczak
Download PDF Download RIS Download Bibtex

Abstract

The prediction of machined surface parameters is an important factor in machining centre development. There is a great need to elaborate a method for on-line surface roughness estimation [1-7]. Among various measurement techniques, optical methods are considered suitable for in-process measurement of machined surface roughness. These techniques are non-contact, fast, flexible and tree-dimensional in nature.

The optical method suggested in this paper is based on the vision system created to acquire an image of the machined surface during the cutting process. The acquired image is analyzed to correlate its parameters with surface parameters. In the application of machined surface image analysis, the wavelet methods were introduced. A digital image of a machined surface was described using the one-dimensional Digital Wavelet Transform with the basic wavelet as Coiflet. The statistical description of wavelet components made it possible to develop the quality measure and correlate it with surface roughness [8-11].

For an estimation of surface roughness a neural network estimator was applied [12-16]. The estimator was built to work in a recurrent way. The current value of the Ra estimation and the measured change in surface image features were used for forecasting the surface roughness Ra parameter. The results of the analysis confirmed the usability of the application of the proposed method in systems for surface roughness monitoring.

Go to article

Authors and Affiliations

Anna Zawada-Tomkiewicz

This page uses 'cookies'. Learn more