Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 8454
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

User authentication is an essential element of any communication system. The paper investigates the vulnerability of the recently published first semiquantum identity authentication protocol (Quantum Information Processing 18: 197, 2019) to the introduced herein multisession attacks. The impersonation of the legitimate parties by a proper combination of phishing techniques is demonstrated. The improved version that closes the identified loophole is also introduced
Go to article

Bibliography

  1.  M.M. Wilde, Quantum Information Theory. Cambridge University Press, 2013, doi: 10.1017/CBO9781139525343.
  2.  S. Wiesner, “Conjugate coding,” SIGACT News, vol. 15, no. 1, pp. 78–88, 1983, doi: 10.1145/1008908.1008920.
  3.  P. Benioff, “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines,” J. Stat. Phys., vol. 22, no. 5, pp. 563–591, 1980, doi: 10.1007/BF01011339.
  4.  C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp. 175–179.
  5.  C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci., vol. 560, pp. 7–11, 2014, doi: 10.1016/j.tcs.2014.05.025.
  6.  P.W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26, no. 5, pp. 1484–1509, 1997, doi: 10.1137/S0097539795293172.
  7.  A. Shenoy-Hejamadi, A. Pathak, and S. Radhakrishna, “Quantum cryptography: Key distribution and beyond,” Quanta, vol. 6, no. 1, pp. 1–47, 2017, doi: 10.12743/quanta.v6i1.57.
  8.  F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key distribution with realistic devices,” Rev. Mod. Phys., vol. 92, p. 025002, 2020, doi: 10.1103/RevModPhys.92.025002.
  9.  D. Pan, K. Li, D. Ruan, S.X. Ng, and L. Hanzo, “Singlephoton- memory two-step quantum secure direct communication relying on Einstein-Podolsky-Rosen pairs,” IEEE Access, vol. 8, pp. 121 146–121 161, 2020, doi: 10.1109/ACCESS.2020.3006136.
  10.  P. Zawadzki, “Advances in quantum secure direct communication,” IET Quant. Comm., vol. 2, no. 2, pp. 54–62, 2021, doi: 10.1049/ qtc2.12009.
  11.  A. Pljonkin and P.K. Singh, “The review of the commercial quantum key distribution system,” in 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2018, pp. 795–799, doi: 10.1109/PDGC.2018.8745822.
  12.  R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. Long, “Implementation and security analysis of practical quantum secure direct communication,” vol. 8, p. 22, 2019, doi: 10.1038/s41377-019-0132-3.
  13.  X. Li and D. Zhang, “Quantum authentication protocol using entangled states,” in Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, 2006, pp. 1004–1009. [Online]. Available: https://www.researchgate.net/ publication/242080451_Quantum_authentication_protocol_using_entangled_states.
  14.  G. Zeng and W. Zhang, “Identity verification in quantum key distribution,” Phys. Rev. A, vol. 61, p. 022303, 2000, doi: 10.1103/ PhysRevA.61.022303.
  15.  Y. Kanamori, S.-M. Yoo, D.A. Gregory, and F.T. Sheldon, “On quantum authentication protocols,” in GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005., vol. 3, 2005, pp. 1650–1654, doi: 10.1109/GLOCOM.2005.1577930.
  16.  P. Zawadzki, “Quantum identity authentication without entanglement,” Quantum Inf. Process., vol. 18, no. 1, p. 7, 2019, doi: 10.1007/ s11128-018-2124-2.
  17.  M. Boyer, D. Kenigsberg, and T. Mor, “Quantum key distribution with classical Bob,” Phys. Rev. Lett., vol. 99, p. 140501, 2007, doi: 10.1103/PhysRevLett.99.140501.
  18.  M. Boyer, R. Gelles, D. Kenigsberg, and T. Mor, “Semiquantum key distribution,” Phys. Rev. A, vol. 79, no. 3, p. 032341, 2009, doi: 10.1103/PhysRevA.79.032341.
  19.  W.O. Krawec, “Security of a semi-quantum protocol where reflections contribute to the secret key,” Quantum Inf. Process., vol. 15, no. 5, pp. 2067–2090, 2016, doi: 10.1007/s11128-016-1266-3.
  20.  Z.-R. Liu and T. Hwang, “Mediated semi-quantum key distribution without invoking quantum measurement,” Ann. Phys., vol. 530, no. 4, p. 1700206, 2018, doi: 10.1002/andp.201700206.
  21.  C.-W. Tsai and C.-W. Yang, “Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise,” Int. J. Theor. Phys., vol. 58, no. 7, pp. 2244–2250, 2019, doi: 10.1007/s10773-019-04116-5.
  22.  W.O. Krawec, “Security proof of a semi-quantum key distribution protocol,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 686–690, doi: 10.1109/ISIT.2015.7282542.
  23.  Y.-P. Luo and T. Hwang, “Authenticated semi-quantum direct communication protocols using Bell states,” Quantum Inf. Process., vol. 15, no. 2, pp. 947–958, 2016, doi: 10.1007/s11128-015-1182-y.
  24.  J. Gu, P.-h. Lin, and T. Hwang, “Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol’,” Quantum Inf. Process., vol. 17, no. 7, p. 182, 2018, doi: 10.1007/s11128-018-1953-3.
  25.  M.-H. Zhang, H.-F. Li, Z.-Q. Xia, X.-Y. Feng, and J.-Y. Peng, “Semiquantum secure direct communication using EPR pairs,” Quantum Inf. Process., vol. 16, no. 5, p. 117, 2017, doi: 10.1007/s11128-017-1573-3.
  26.  L.-L. Yan, Y.-H. Sun, Y. Chang, S.-B. Zhang, G.-G. Wan, and Z.-W. Sheng, “Semi-quantum protocol for deterministic secure quantum communication using Bell states,” Quantum Inf. Process., vol. 17, no. 11, p. 315, 2018, doi: 10.1007/s11128-018-2086-4.
  27.  C. Xie, L. Li, and D. Qiu, “A novel semi-quantum secret sharing scheme of specific bits,” Int. J. Theor. Phys., vol. 54, no. 10, pp. 3819– 3824, 2015, doi: 10.1007/s10773-015-2622-2.
  28.  A. Yin and F. Fu, “Eavesdropping on semi-quantum secret sharing scheme of specific bits,” Int. J. Theor. Phys., vol. 55, no. 9, pp. 4027– 4035, 2016, doi: 10.1007/s10773-016-3031-x.
  29.  K.-F. Yu, J. Gu, T. Hwang, and P. Gope, “Multi-party semi-quantum key distribution-convertible multi-party semi- quantum secret sharing,” Quantum Inf. Process., vol. 16, no. 8, p. 194, 2017, doi: 10.1007/s11128-017-1631-x.
  30.  X. Gao, S. Zhang, and Y. Chang, “Cryptanalysis and improvement of the semi-quantum secret sharing protocol,” Int. J. Theor. Phys., vol. 56, no. 8, pp. 2512–2520, 2017, doi: 10.1007/s10773-017-3404-9.
  31.  Z. Li, Q. Li, C. Liu, Y. Peng, W. H. Chan, and L. Li, “Limited resource semiquantum secret sharing,” Quantum Inf. Process., vol. 17, no. 10, p. 285, 2018, doi: 10.1007/s11128-018-2058-8.
  32.  K. Sutradhar and H. Om, “Efficient quantum secret sharing without a trusted player,” Quantum Inf. Process., vol. 19, no. 2, p. 73, 2020, doi: 10.1007/s11128-019-2571-4.
  33.  H. Iqbal and W.O. Krawec, “Semi-quantum cryptography,” Quantum Inf. Process., vol. 19, no. 3, p. 97, 2020, doi: 10.1007/s11128-020- 2595-9.
  34.  N.-R. Zhou, K.-N. Zhu, W. Bi, and L.-H. Gong, “Semi-quantum identification,” Quantum Inf. Process., vol. 18, no. 6, p. 197, 2019, doi: 10.1007/s11128-019-2308-4.
  35.  K. Moriarty, B. Kaliski, and A. Rusch, “Pkcs #5: Password-based cryptography specification version 2.1,” Internet Requests for Comments, RFC Editor, RFC 8018, January 2017. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8018.html.
  36.  A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “The memory-hard Argon2 password hash and proof-of-work function,” Working Draft, IETF Secretariat, Internet-Draft draft-irtf-cfrg-argon2-12, 2020. [Online]. Available: https://tools.ietf.org/id/draft-irtf-cfrg-argon2-03. html.
  37.  P.-H. Lin, T. Hwang, and C.-W. Tsai, “Double CNOT attack on ‘Quantum key distribution with limited classical Bob’,” Int. J. Quantum Inf., vol. 17, no. 02, p. 1975001, 2019, doi: 10.1142/S0219749919750017.
  38.  D. Moody, L. Chen, S. Jordan, Y.-K. Liu, D. Smith, R. Perlner, and R. Peralta, “Nist report on post-quantum cryptography,” National Institute of Standards and Technology, U.S. Department of Commerce, Tech. Rep., 2016, doi: 10.6028/NIST.IR.8105.
  39.  P. Wang, S. Tian, Z. Sun, and N. Xie, “Quantum algorithms for hash preimage attacks,” Quantum Eng., vol. 2, no. 2, p. e36, 2020, doi: 10.1002/que2.36.
Go to article

Authors and Affiliations

Piotr Zawadzki
1
ORCID: ORCID

  1. Department of Telecommunications and Teleinformatics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The methods of severe plastic deformation (SPD) of metals and metal alloys are very attractive due to the possibility of refinement of the grains to nanometric sizes, which facilitates obtaining high mechanical properties. This study investigated the influence of SPD in the process of hydrostatic extrusion (HE) on the anisotropy of the mechanical properties of the CuCrZr copper alloy. The method of HE leads to the formation of a characteristic microstructure in deformed materials, which can determine their potential applications. On the longitudinal sections of the extruded bars, a strong morphological texture is observed, manifested by elongated grains in the direction of extrusion. In the transverse direction, these grains are visible as equiaxed. The anisotropy of properties was mainly determined based on the analysis of the static mini-sample static tensile test and the dynamic impact test. The obtained results were correlated with microstructural observations. In the study, three different degrees of deformation were applied at the level necessary to refine the grain size to the ultrafine-grained level. Regardless of the applied degree of deformation, the effect of the formation of a strong morphological texture was demonstrated, as a result of which there is a clear difference between the mechanical properties depending on the test direction, both by the static and dynamic method. The obtained results allow for the identification of the characteristic structure formed during the HE process and the more effective use of the CuCrZr copper alloy in applications.
Go to article

Authors and Affiliations

Sylwia Przybysz
1
Mariusz Kulczyk
1
ORCID: ORCID
Jacek Skiba
1
Monika Skorupska
1

  1. Institute of High Pressure Physics of the Polish Academy of Sciences, Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Polyester coatings are among the most commonly used types of powder paints and present a wide range of applications. Apart from its decorative values, polyester coating successfully prevents the substrate from environmental deterioration. This work investigates the cavitation erosion (CE) resistance of three commercial polyester coatings electrostatic spray onto AW-6060 aluminium alloy substrate. Effect of coatings repainting (single- and double-layer deposits) and effect of surface finish (matt, silk gloss and structural) on resistance to cavitation were comparatively studied. The following research methods were used: CE testing using ASTM G32 procedure, 3D profilometry evaluation, light optical microscopy, scanning electron microscopy (SEM), optical profilometry and FTIR spectroscopy. Electrostatic spray coatings present higher CE resistance than aluminium alloy. The matt finish double-layer (M2) and single-layer silk gloss finish (S1) are the most resistant to CE. The structural paint showed the lowest resistance to cavitation wear which derives from the rougher surface finish. The CE mechanism of polyester coatings relies on the material brittle-ductile behaviour, cracks formation, lateral net-cracking growth and removal of chunk coating material and craters’ growth. Repainting does not harm the properties of the coatings. Therefore, it can be utilised to regenerate or smother the polyester coating finish along with improvement of their CE resistance.
Go to article

Bibliography

  1.  A. Kausar, “Review of fundamentals and applications of polyester nanocomposites filled with carbonaceous nanofillers,” J. Plast. Film Sheeting, vol. 35, no. 1, pp. 22–44, Jan. 2019, doi: 10.1177/8756087918783827.
  2.  A. Krzyzak, E. Kosicka, and R. Szczepaniak, “Research into the Effect of Grain and the Content of Alundum on Tribological Properties and Selected Mechanical Properties of Polymer Composites,” Materials, vol. 13, no. 24, Art. no. 5735, Jan. 2020, doi: 10.3390/ma13245735.
  3.  A. Kausar, “High performance epoxy/polyester-based nanocomposite coatings for multipurpose applications: A review,” J. Plast. Film Sheeting, vol. 36, no. 4, pp. 391–408, Oct. 2020, doi: 10.1177/8756087920910481.
  4.  M. Winnicki, T. Piwowarczyk, and A. Małachowska, “General description of cold sprayed coatings formation and of their properties,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 3, pp. 301–310, Jun. 2018.
  5.  L. Łatka, L. Pawłowski, M. Winnicki, P. Sokołowski, A. Małachowska, and S. Kozerski, “Review of Functionally Graded Thermal Sprayed Coatings,” Appl. Sci., vol. 10, no. 15, Art. no. 5153, Jan. 2020, doi: 10.3390/app10155153.
  6.  R. Kosydar et al., “Boron nitride/titanium nitride laminar lubricating coating deposited by pulsed laser ablation on polymer surface,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 56, no. 3, pp. 217–221, 2008.
  7.  T. Burakowski and T. Wierzchon, Surface Engineering of Metals: Principles, Equipment, Technologies. Boca Raton, Fla: CRC Press, 1998.
  8.  T. Hejwowski, Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne (Modern wear and erosion resitant thermally deposited coatings). Lublin, Poland: Politechnika Lubelska (Lublin University of Technology), 2013. [Online]. Available: http://bc.pollub. pl/dlibra/docmetadata?id=4059.
  9.  Z.W. Wicks. Jr, F.N. Jones, S.P. Pappas, and D.A. Wicks, Organic Coatings: Science and Technology. John Wiley & Sons, 2007.
  10.  S. Biggs, C.A. Lukey, G.M. Spinks, and S.-T. Yau, “An atomic force microscopy study of weathering of polyester/melamine paint surfaces,” Prog. Org. Coat., vol. 42, no. 1, pp. 49–58, Jun. 2001, doi: 10.1016/S0300-9440(01)00147-3.
  11.  M. Oleksy et al., “Kompozycje modyfikowanych farb proszkowych. Cz. 1. Hybrydowe kompozycje poliestrowych farb proszkowych,” Polimery, vol. 63, no. 11– 12, pp. 762‒771, 2018, doi: 10.14314/polimery.2018.11.4.
  12.  M. Fernández-Álvarez, F. Velasco, and A. Bautista, “Effect on wear resistance of nanoparticles addition to a powder polyester coating through ball milling,” J. Coat. Technol. Res., vol. 15, no. 4, pp. 771–779, Jul. 2018, doi: 10.1007/s11998-018-0106-z.
  13.  M. Zouari, M. Kharrat, and M. Dammak, “Wear and friction analysis of polyester coatings with solid lubricant,” Surf. Coat. Technol., vol. 204, no. 16, pp. 2593–2599, May 2010, doi: 10.1016/j.surfcoat.2010.02.001.
  14.  I. Stojanović, V. Šimunović, V. Alar, and F. Kapor, “Experimental Evaluation of Polyester and Epoxy–Polyester Powder Coatings in Aggressive Media,” Coatings, vol. 8, no. 3, Art. no. 98, Mar. 2018, doi: 10.3390/coatings8030098.
  15.  K.V.S.N. Raju and D.K. Chattopadhyay, “Polyester coatings for corrosion protection,” in High-Performance Organic Coatings, A.S. Khanna, Ed. Woodhead Publishing, 2008, pp. 165–200. doi: 10.1533/9781845694739.2.165.
  16.  M. Szala and E. Kot, “Influence of repainting on the mechanical properties, surface topography and microstructure of polyester powder coatings,” Adv. Sci. Technol. Res. J., vol. 11, no. 2, pp. 159–165, Jun. 2017, doi: 10.12913/22998624/69680.
  17.  M. Walczak, D. Pieniak, and M. Zwierzchowski, “The tribological characteristics of SiC particle reinforced aluminium composites,” Arch. Civ. Mech. Eng., vol. 15, no. 1, pp. 116–123, Jan. 2015, doi: 10.1016/j.acme.2014.05.003.
  18.  M. Szala, L. Łatka, M.Walczak, and M.Winnicki, “Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/ Al2O3 and Cu/Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass,” Metals, vol. 10, no. 7, Art. no. 7, Jul. 2020, doi: 10.3390/met10070856.
  19.  V. Caccese, K.H. Light, and K.A. Berube, “Cavitation erosion resistance of various material systems,” Ships Offshore Struct., vol. 1, no. 4, pp. 309–322, Apr. 2006, doi: 10.1533/saos.2006.0136.
  20.  T. Deplancke, O. Lame, J.-Y. Cavaille, M. Fivel, M. Riondet, and J.-P. Franc, “Outstanding cavitation erosion resistance of Ultra High Molecular Weight Polyethylene (UHMWPE) coatings,” Wear, vol. 328–329, pp. 301–308, Apr. 2015, doi: 10.1016/j.wear.2015.01.077.
  21.  N. Qiu, L. Wang, S. Wu, and D.S. Likhachev, “Research on cavitation erosion and wear resistance performance of coatings,” Eng. Fail. Anal., vol. 55, pp. 208–223, Sep. 2015, doi: 10.1016/j.engfailanal.2015.06.003.
  22.  S. Chi, J. Park, and M. Shon, “Study on cavitation erosion resistance and surface topologies of various coating materials used in shipbuilding industry,” J. Ind. Eng. Chem., vol. 26, pp. 384–389, Jun. 2015, doi: 10.1016/j.jiec.2014.12.013.
  23.  G.L. García et al., “Cavitation resistance of epoxybased multilayer coatings: Surface damage and crack growth kinetics during the incubation stage,” Wear, vol. 316, no. 1–2, pp. 124–132, Aug. 2014, doi: 10.1016/j.wear.2014.04.007.
  24.  M. Hibi, K. Inaba, K. Takahashi, K. Kishimoto, and K. Hayabusa, “Effect of Tensile Stress on Cavitation Erosion and Damage of Polymer,” J. Phys. Conf. Ser., vol. 656, no. 1, p. 012049, Nov. 2015, doi: 10.1088/1742-6596/656/1/012049.
  25.  G. Taillon, S. Saito, K. Miyagawa, and C. Kawakita, “Cavitation erosion resistance of high-strength fiber reinforced composite material,” IOP Conf. Ser. Earth Environ. Sci., vol. 240, no. 6, p. 062056, Mar. 2019, doi: 10.1088/1755-1315/240/6/062056.
  26.  N. Sheppard, “The Historical Development of Experimental Techniques in Vibrational Spectroscopy,” in Handbook of Vibrational Spectroscopy, American Cancer Society, 2006. doi: 10.1002/0470027320.s0101.
  27.  R.M. Silverstein et al., Spectrometric Identification of Organic Compounds, 8th Edition, 8th edition. Wiley, 2014.
  28.  W. Macek et al., “Profile and Areal Surface Parameters for Fatigue Fracture Characterisation,” Materials, vol. 13, no. 17, Art. no. 3691, 2020, doi: 10.3390/ma13173691.
  29.  “ISO 4287:1997. Geometrical Product Specifications (GPS) – Surface texture: Profile method – Terms, definitions and surface texture parameters,” International Organization for Standardization, Geneva, Switzerland, Norma, 1997.
  30.  A. Skoczylas, “Influence of Centrifugal Shot Peening Parameters on the Impact Force and Surface Roughness of EN-AW2024 Aluminum Alloy Elements,” Adv. Sci. Technol. Res. J., vol. 15, no. 1, pp. 71–78, Mar. 2021, doi: 10.12913/22998624/130511.
  31.  “ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus,” ASTM International: West Conshohocken, Philadelphia, PA, USA, 2010.
  32.  M. Szala, M. Walczak, L. Łatka, K. Gancarczyk, and D. Özkan, “Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying,” Adv. Mater. Sci., vol. 20, no. 2, pp. 26–38, Jun. 2020, doi: 10.2478/adms-2020-0008.
  33.  J. Steller, A. Krella, J. Koronowicz, and W. Janicki, “Towards quantitative assessment of material resistance to cavitation erosion,” Wear, vol. 258, no. 1, pp. 604–613, Jan. 2005, doi: 10.1016/j.wear.2004.02.015.
  34.  J. Steller, “International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation,” Wear, vol. 233–235, pp. 51–64, Dec. 1999, doi: 10.1016/S0043-1648(99)00195-7.
  35.  B. Dybowski, M. Szala, T. J. Hejwowski, and A. Kiełbus, “Microstructural phenomena occurring during early stages of cavitation erosion of Al-Si aluminium casting alloys,” Solid State Phenom., vol. 227, pp. 255–258, 2015, doi: 10.4028/www.scientific.net/SSP.227.255.
  36.  J. Zhao, Z. Jiang, J. Zhu, J. Zhang, and Y. Li, “Investigation on Ultrasonic Cavitation Erosion Behaviors of Al and Al-5Ti Alloys in the DistilledWater,” Metals, vol. 10, no. 12, Art. no. 1631, Dec. 2020, doi: 10.3390/met10121631.
  37.  J. Lin, Z. Wang, J. Cheng, M. Kang, X. Fu, and S. Hong, “Effect of Initial Surface Roughness on Cavitation Erosion Resistance of Arc- Sprayed Fe-Based Amorphous/Nanocrystalline Coatings,” Coatings, vol. 7, no. 11, Art. no. 2000, Nov. 2017, doi: 10.3390/coatings7110200.
  38.  M. Szala, L. Łatka, M. Awtoniuk, M. Winnicki, and M. Michalak, “Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3‒13 wt% TiO2 Coatings,” Processes, vol. 8, no. 12, Art. no. 1544, Dec. 2020, doi: 10.3390/pr8121544.
  39.  J.C. Lindon, Encyclopedia of Spectroscopy and Spectrometry – 3rd Edition. 2010. [Online]. Available: https://www.elsevier.com/books/ encyclopedia-of-spectro scopy-and-spectrometry/lindon/978-0-12-803224-4 (Accessed: Feb. 24, 2021).
  40.  J.I. Haleem, “A Review of: Handbook of Near-Infrared Analysis,” Instrum. Sci. Technol., vol. 22, no. 3, pp. 283–285, Aug. 1994, doi: 10.1080/10739149408000456.
  41. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd, 2004, doi: 10.1002/0470011149.ch3.
Go to article

Authors and Affiliations

Mirosław Szala
1
ORCID: ORCID
Aleksander Świetlicki
2
Weronika Sofińska-Chmiel
3

  1. Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  2. Students Research Group of Materials Technology, Department of Materials Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  3. Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowska 3, 20-031 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the article is to present an exemplary system for recording and analyzing quality costs and to demonstrate that it is helpful in planning and assessing the effectiveness of continuous improvement processes at the operational and strategic level. Various approaches to defining quality costs are described, followed by indicators for assessing effectiveness and tools to collect data on the values of individual groups of quality costs and compare them with financial indicators. The practical part presents a case study on the quality cost accounting system in a medical company and the possibility of using quality cost accounting to plan and evaluate continuous improvement processes and make managerial decisions.
Go to article

Authors and Affiliations

Ilona Herzog
Marta Grabowska
Download PDF Download RIS Download Bibtex

Abstract

The aim of our research is to gain understanding about material flow related information sharing in the circular economy value network in the form of industrial symbiosis. We need this understanding for facilitating new industrial symbiosis relationships and to support the optimization of operations. Circular economy has been promoted by politics and regulation by EU. In Finland, new circular economy strategy raises the facilitation of industrial symbiosis and data utilization as the key actions to improve sustainability and green growth. Companies stated that the practical problem is to get information on material availability. Digitalization is expected to boost material flows in circular economy by data, but what are the real challenges with circular material flows and what is the willingness of companies to develop co-operation? This paper seeks understanding on how Industry 4.0 is expected to improve the efficiency of waste or by-product flows and what are the expectations of companies. The research question is: How Industry 4.0 technologies and solutions can fix the gaps and discontinuities in the Industrial Symbiosis information flow? This research is conducted as a qualitative case study research with three cases, three types of material and eight companies. Interview data were collected in Finland between January and March 2021. Companies we interviewed mentioned use-cases for sensors and analytics to optimize the material flow but stated the investment cost compared to the value of information. To achieve sustainable circular material flows, the development needs to be done in the bigger picture, for the chain or network of actors, and the motivation and the added value must be found for each of them.
Go to article

Authors and Affiliations

Anne-Mari Järvenpää
Vesa Salminen
Jussi Kantola
Download PDF Download RIS Download Bibtex

Abstract

In digital revolution, the appropriate IT infrastructure, technological knowledge are essential for the success of companies, where the success of the digital transformation depends on digital maturity. The aim of the study is to define the digital maturity, theoretical foundation of the digital maturity model and present a framework for small and medium-sized enterprises (SMEs) understanding where they are in digitalisation (how advanced their digital resource system and digital approach) to respond faster and efficiently to environmental changes. The model construction is based on theory of dynamic capabilities, graduation models, and SMEs management challenges. The model is a dynamic model to support management in strategic, digital and organizational developments, which is divided into IT and organizational dimensions, including 6 components and 28 subcomponents. The ultimate goal of the study is to determine the component weights to create a neurofuzzy model.
Go to article

Authors and Affiliations

Ágnes Sándor
Ákos Gubán
Download PDF Download RIS Download Bibtex

Abstract

Technological progress is the driving force behind industrial development. It is a multidimensional and multi-level phenomenon. In this article we focus on its three manifestations: information and communication technologies (ICT), Industry 4.0 and agile manufacturing. The aim of this article is to analyse the relationship between these constructs as they are undoubtedly interrelated. ICT plays a key role, but it is not a goal itself. They are a prerequisite for the implementation of Industry 4.0, but together with it they serve to achieve agility by the manufacturing system and, as a result, achieve a competitive advantage by companies operating in turbulent and unpredictable environment. The literature findings in this paper are part of a broader study conducted on the impact of ICT on agility of SMEs operating in India. Therefore, we include also subsections showing the level of this relationship in Indian SMEs.
Go to article

Authors and Affiliations

Ibrahim Khan Mohammed
Stefan Trzcielinski
Download PDF Download RIS Download Bibtex

Abstract

Enterprise innovation is currently becoming a recognized factor of the competitiveness, survival, and development of companies in the market economy. Managers still need recommendations on ways of stimulating the growth of innovation in their companies. The objective of this paper is to identify the strategic factors of enterprise innovativeness in the area of technology, defined as the most important internal factors positively impacting the innovativeness of enterprises in a strategic perspective. Empirical studies were conducted using the Computer-Assisted Web Interview (CAWI) method on a purposive sample of N = 180 small and medium-sized innovative industrial processing enterprises in Poland. Data analysis was performed using Exploratory Factor Analysis within the Confirmatory Factor Analysis framework (E-CFA) and Structural Equation Modeling (SEM). Empirical research shows that the strategic factor of enterprise innovativeness in the area of technology is technological activity. A technologically active company should (1) possess a modern machinery stock, (2) conduct systematic technological audits, and (3) maintain close technical cooperation with the suppliers of raw materials, consumables, and intermediates. The implementation of the indicated recommendations by managers should lead to increased innovativeness of small and medium-sized industrial companies. The author recommends the use of the presented research procedure and data analysis methods in further studies.
Go to article

Authors and Affiliations

Danuta Rojek
Download PDF Download RIS Download Bibtex

Abstract

The present paper describes a methodological framework developed to select a multi-label dataset transformation method in the context of supervised machine learning techniques. We explore the rectangular 2D strip-packing problem (2D-SPP), widely applied in industrial processes to cut sheet metals and paper rolls, where high-quality solutions can be found for more than one improvement heuristic, generating instances with multi-label behavior. To obtain single-label datasets, a total of five multi-label transformation methods are explored. 1000 instances were generated to represent different 2D-SPP variations found in real-world applications, labels for each instance represented by improvement heuristics were calculated, along with 19 predictors provided by problem characteristics. Finally, classification models were fitted to verify the accuracy of each multi-label transformation method. For the 2D-SPP, the single-label obtained using the exclusion method fit more accurate classification models compared to the other four multi-label transformation methods adopted.
Go to article

Authors and Affiliations

Neuenfeldt Júnior Alvaro
Matheus Francescatto
Gabriel Stieler
David Disconzi
Download PDF Download RIS Download Bibtex

Abstract

This study investigates (1) the effect of quality information on quality performance through process control and (2) the moderating role of shop floor leadership on the relationship between quality information and quality performance in the context of manufacturing plants on a global basis. The moderated mediation analysis with a bootstrapping approach was employed to analyse data for hypotheses testing. The data is from the fourth-round dataset of the High- Performance Manufacturing Project, collected from manufacturing plants worldwide. The results indicate that (1) quality information is positively associated with quality performance through process control, and (2) shop floor leadership (i.e., supervisory interaction facilitation) positively moderates the indirect effect of quality information on quality performance; that is, the shop floor leadership practice strengthens the effect of quality information on quality performance through process control. This study also has a practical implication for top managers who should consider the vital role of leadership practices adopted by shop floor supervisors in implementing total quality management practices and should raise awareness that leadership practices are not only for the ‘C-suite’ but also for shop floor supervisors.
Go to article

Authors and Affiliations

Ngoc Anh Nguyen
Chi Phan Anh
Thi Xuan Thoa Pham
Matsui Yoshiki
Download PDF Download RIS Download Bibtex

Abstract

In mid-1992, Japanese consultant Yamada Hitoshi was tasked with modifying the production systems of Japanese companies as the existing configurations at manufacturing plants no longer satisfied unstable demands. He made improvements to the overall production system by dividing the long assembly lines into several short ones called cells or seru. Although of the advantages, it is still unclear about how to manage this new production system, and what variables really promoted the desired benefits. We identify in total 39 articles from 2004– 2020 about the progress of the seru production system, and we observe some possibilities to improve the effectiveness of this type of the production system. The first is the possibility of manufacturing the product in flexible sequence, in which the operations are independent among them. We show through the developed example that the makespan may be different. We noted when converting the in-line production system to one pure seru, the makespan tend to increase. Nevertheless, when analyzing the effectiveness of serus working concomitantly considering splitting the same lot, makespan and the cost may be reduced. And finally, when converting to one of pure serus, the performance may be similar to that obtained when serus working concomitantly.
Go to article

Authors and Affiliations

Yung Chin Shih
Download PDF Download RIS Download Bibtex

Abstract

Lean Green is a concept which is implemented as a part of the sustainable development strategy, share allowing for reduction of the company’s costs related to, on the one hand, efficient use of energy factors and on the other optimum use of production factors aimed at minimisation of wastefulness, in particular in the area of post-production waste and pollution. The purpose of the article is to identify the determinants, internal stimuli and to specify the force with which they affect the implementation of the Lean Green concept in companies on various continents: America, Asia and Europe. For the purpose of better recognition of the examined problem, analysis of results of studies was made in consideration of the following criteria: country where a given company operates and share of persons outside the company in the process of implementation of this concept. In article uses the one-way ANOVA methodology, the Shapiro Wilk and Levene tests and the non-parametric Kruskal Wallis test. Hitherto studies have confirmed that the determinants are regional, which indicates the necessity of directional studies.
Go to article

Authors and Affiliations

Nicoletta Baskiewicz
Claudiu Barbu
Download PDF Download RIS Download Bibtex

Abstract

Traditionally the aggregate production plan helps in determining the inventory, production, and work-force, based on the demand forecasts without considering the productivity loss at a tactical level in supply chain planning. In this paper, we include the productivity loss into traditional aggregate production plan and the prescriptive analytics technique, linear programming, is used to solve this problem of practical interest in the domain of multifarious businesses and industries. In this study, we discussed two model variations of the aggregate production planning problem with and without productivity loss, i) fixed work-force, and ii) variable Work Force. The mathematical models were designated to be solved by using an open-source python pulp package in order to evaluate the impacts of the productivity loss on both the models. PuLP is an open-source modeling framework provided by the COIN-OR Foundation (Computational Infrastructure for Operations Research) for linear and integer Programing problems written in Python. The computational results indicate that the productivity loss has direct impact on the workforce hiring and firing.
Go to article

Authors and Affiliations

Hakeem Ur REHMAN
Ayyaz AHMAD
Zarak ALI
Sajjad Ahmad BAIG
Umair MANZOOR

Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is to present new reliability characteristics expressed as functions of some variable expressing the measure of effective operation of a machine or a device. These characteristics can be used for both renewable and non-renewable objects. Their mathematical idea reflects the essence of already known characteristics, i.e. it expresses the probability of failure but expressed as a function of a variable, not necessarily identified with time.
Go to article

Authors and Affiliations

Gabriela Kopania
Anna Kuczmaszewska
Download PDF Download RIS Download Bibtex

Abstract

Simulations are becoming one of the most important techniques supporting production preparation, even in those industrial sectors with atypical technological processes, such as in metallurgy, where there is a multiphase material flow. This is due to the fact that in the conditions of a market economy, enterprises have to solve more and more complex problems in a shorter time. On the basis of the existing production process and the knowledge of the flow characteristics in a given process, a model is built, which, when subjected to simulation tests, provides experimental results in the scope of the defined problem. The use of computer techniques also creates new possibilities for the rational use of the reserves inherent in each technological process. Taking into account the existing demand and the state of modern technology, the computer model can be a source of information for further analysis and decision-making processes supporting company management. At work a model of the logistic system was made on the example of a hot-rolled steel strip mill, on which simulation experiments were carried out to improve the effectiveness and efficiency of the analysis production line. The presented article aims to disseminate the idea of ??Industry 4.0 in Polish companies from the manufacturing industry sector, taking into account simulation techniques.
Go to article

Authors and Affiliations

Mariusz Niekurzak
1
Ewa Kubińska-Jabcoń
1

  1. AGH University of Science and Technology, Faculty of Management, Poland
Download PDF Download RIS Download Bibtex

Abstract

The lubrication of angular contact ball bearings under high-speed motion conditions is particularly important to the working performance of rolling bearings. Combining the contact characteristics of fluid domain and solid domain, a lubrication calculation model for angular contact ball bearings is established based on the RNG k-ε method. The pressure and velocity characteristics of the bearing basin under the conditions of rotational speed, number of balls and lubricant parameters are analyzed, and the lubrication conditions and dynamics of the angular contact ball bearings under different working conditions are obtained. The results show that the lubricant film pressure will rise with increasing speed and viscosity of the lubricant. The number of balls affects the pressure and velocity distribution of the flow field inside the bearing but has a small effect on the values of the characteristic parameters of the bearing flow field. The established CFD model provides a new approach to study the effect of fluid flow on bearing performance in angular contact ball bearings.
Go to article

Bibliography

[1] B. Yan, L. Dong, K. Yan, F. Chen, Y. Zhu, and D. Wang. Effects of oil-air lubrication methods on the internal fluid flow and heat dissipation of high-speed ball bearings. Mechanical Systems and Signal Processing, 151:107409, 2021. doi: 10.1016/j.ymssp.2020.107409.
[2] H. Bao, X. Hou, X. Tang, and F. Lu. Analysis of temperature field and convection heat transfer of oil-air two-phase flow for ball bearing with under-race lubrication. Industrial Lubrication and Tribology, 73(5):817–821, 2021. doi: 10.1108/ilt-03-2021-0067/v2/decision1.
[3] T.A. Harris. Rolling Bearing Analysis. Taylor & Francis Inc. 1986.
[4] T.A. Harris and M.N. Kotzalas. Advanced Concepts of Bearing Technology. Taylor & Francis Inc. 2006.
[5] F.J. Ebert. Fundamentals of design and technology of rolling element bearings. Chinese Journal of Aeronautics, 23(1):123-136, 2010. doi: 10.1016/s1000-9361(09)60196-5.
[6] T.A. Harris. An analytical method to predict skidding in high speed roller bearings. A S L E Transactions, 9(3):229–241, 1966. doi: 10.1080/05698196608972139.
[7] A. Wang, S. An, and T. Nie. Analysis of main bearings lubrication characteristics for diesel engine. In: IOP Conference Series: Materials Science and Engineering, 493(1):012135, 2019. doi: 10.1088/1757-899X/493/1/012135.
[8] W. Zhou, Y. Wang, G. Wu, B. Gao, and W. Zhang. Research on the lubricated characteristics of journal bearing based on finite element method and mixed method. Ain Shams Engineering Journal, 13(4):101638, 2022. doi: 10.1016/j.asej.2021.11.007.
[9] J. Chmelař, K. Petr, P. Mikeš, and V. Dynybyl. Cylindrical roller bearing lubrication regimes analysis at low speed and pure radial load. Acta Polytechnica, 59(3):272–282, 2019. doi: 10.14311/AP.2019.59.0272.
[10] C. Wang, M. Wang, and L. Zhu. Analysis of grooves used for bearing lubrication efficiency enhancement under multiple parameter coupling. Lubricants, 10(3):39, 2022. doi: 10.3390/lubricants10030039.
[11] Z. Xie and W. Zhu. An investigation on the lubrication characteristics of floating ring bearing with consideration of multi-coupling factors. Mechanical Systems and Signal Processing, 162:108086, 2022. doi: 10.1016/j.ymssp.2021.108086.
[12] M. Almeida, F. Bastos, and S. Vecchio. Fluid–structure interaction analysis in ball bearings subjected to hydrodynamic and mixed lubrication. Applied Sciences, 13(9):5660, 2023. doi: 10.3390/app13095660.
[13] J. Sun, J. Yang, J. Yao, J. Tian, Z. Xia, H. Yan, and Z. Bao. The effect of lubricant viscosity on the performance of full ceramic ball bearings. Materials Research Express, 9(1):015201, 2022. doi: 10.1088/2053-1591/ac4881.
[14] D.Y. Dhande and D.W. Pande. A two-way {FSI} analysis of multiphase flow in hydrodynamic journal bearing with cavitation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39:3399–3412, 2017. doi: 10.1007/s40430-017-0750-8.
[15] H. Liu, Y. Li, and G. Liu. Numerical investigation of oil spray lubrication for transonic bearings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:401, 2018. doi: 10.1007/s40430-018-1317-z.
Go to article

Authors and Affiliations

Bowen Jiao
1
ORCID: ORCID
Qiang Bian
1
ORCID: ORCID
Xinghong Wang
1
Chunjiang Zhao
1
ORCID: ORCID
Ming Chen
1
Xiangyun Zhang
2

  1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
  2. Luoyang Bearing Research Institute Co., Ltd, Luoyang, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an adaptive distributed formation controller for wheeled nonholonomic mobile robots is developed. The dynamical model of the robots is first derived by employing the Euler-Lagrange equation while taking into consideration the presence of disturbances and uncertainties in practical applications. Then, by incorporating fractional calculus in conjunction with fast terminal sliding mode control and consensus protocol, a robust distributed formation controller is designed to assure a fast and finite-time convergence of the robots towards the required formation pattern. Additionally, an adaptive mechanism is integrated to effectively counteract the effects of disturbances and uncertain dynamics. Moreover, the suggested control scheme's stability is theoretically proven through the Lyapunov theorem. Finally, simulation outcomes are given in order to show the enhanced performance and efficiency of the suggested control technique.
Go to article

Bibliography

[1] D. Xu, X. Zhang, Z. Zhu, C. Chen, and P. Yang. Behavior-based formation control of swarm robots. Mathematical Problems in Engineering, 2014:205759, 2014. doi: 10.1155/2014/205759.
[2] G. Lee and D. Chwa. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intelligent Service Robotics, 11:127–138, 2018. doi: 10.1007/s11370-017-0240-y.
[3] N. Hacene and B. Mendil. Behavior-based autonomous navigation and formation control of mobile robots in unknown cluttered dynamic environments with dynamic target tracking. International Journal of Automation and Computing, 18:766–786, 2021. doi: 10.1007/s11633-020-1264-x.
[4] Z. Pan, D. Li, K. Yang, and H. Deng. Multi-robot obstacle avoidance based on the improved artificial potential field and pid adaptive tracking control algorithm. Robotica, 37(11):1883–1903, 2019. doi: 10.1017/S026357471900033X.
[5] A.D. Dang, H.M. La, T. Nguyen, and J. Horn. Formation control for autonomous robots with collision and obstacle avoidance using a rotational and repulsive force–based approach. International Journal of Advanced Robotic Systems, 16(3):1729881419847897, 2019. doi: 10.1177/1729881419847897.
[6] M. Maghenem, A. Loría, E. Nuno, and E. Panteley. Consensus-based formation control of networked nonholonomic vehicles with delayed communications. IEEE Transactions on Automatic Control, 66(5):2242–2249, 2020. doi: 10.1109/TAC.2020.3005668.
[7] J.G. Romero, E. Nuño, E. Restrepo, and I. Sarras. Global consensus-based formation control of nonholonomic mobile robots with time-varying delays and without velocity measurements. IEEE Transactions on Automatic Control, 2023. doi: 10.1109/TAC.2023.3264744.
[8] S.-L. Dai, S. He, X. Chen, and X. Jin. Adaptive leader–follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance. IEEE Transactions on Industrial Informatics, 16(6):3662–3671, 2019. doi: 10.1109/TII.2019.2939263.
[9] J. Hirata-Acosta, J. Pliego-Jiménez, C. Cruz-Hernádez, and R. Martínez-Clark. Leader-follower formation control of wheeled mobile robots without attitude measurements. Applied Sciences, 11(12):5639, 2021. doi: 10.3390/app11125639.
[10] X. Liang, H. Wang, Y.-H. Liu, Z. Liu, and W. Chen. Leader-following formation control of nonholonomic mobile robots with velocity observers. IEEE/ASME Transactions on Mechatronics, 25(4):1747–1755, 2020. doi: 10.1109/TMECH.2020.2990991.
[11] X. Chen, F. Huang, Y. Zhang, Z. Chen, S. Liu, Y. Nie, J. Tang, and S. Zhu. A novel virtual-structure formation control design for mobile robots with obstacle avoidance. Applied Sciences, 10(17):5807, 2020. doi: 10.3390/app10175807.
[12] L. Dong, Y. Chen, and X. Qu. Formation control strategy for nonholonomic intelligent vehicles based on virtual structure and consensus approach. Procedia Engineering, 137:415–424, 2016. doi: 10.1016/j.proeng.2016.01.276.
[13] N. Nfaileh, K. Alipour, B. Tarvirdizadeh, and A. Hadi. Formation control of multiple wheeled mobile robots based on model predictive control. Robotica, 40(9):3178–3213, 2022. doi: 10.1017/S0263574722000121.
[14] H. Xiao, C.L.P. Chen, G. Lai, D. Yu, and Y. Zhang. Integrated nonholonomic multi-robot con- sensus tracking formation using neural-network-optimized distributed model predictive control strategy. Neurocomputing, 518:282–293, 2023. doi: 10.1016/j.neucom.2022.11.007.
[15] W. Wang, J. Huang, C. Wen, and H. Fan. Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica, 50(4):1254–1263, 2014. doi: 10.1016/j.automatica.2014.02.028.
[16] Y.H. Moorthy and S. Joo. Distributed leader-following formation control for multiple nonholonomic mobile robots via bioinspired neurodynamic approach. Neurocomputing, 492:308–321, 2022. doi: 10.1016/j.neucom.2022.04.001.
[17] S. Ik Han. Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems. IET Control Theory & Applications, 12(2):282–290, 2018. doi: 10.1049/iet-cta.2017.0351.
[18] C.-C. Tsai, Y.-X. Li, and F.-C. Tai. Backstepping sliding-mode leader-follower consensus formation control of uncertain networked heterogeneous nonholonomic wheeled mobile multirobots. In 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pages 1407–1412. IEEE, 2017. doi: 10.23919/SICE.2017.8105661.
[19] R. Rahmani, H. Toshani, and S. Mobayen. Consensus tracking of multi-agent systems using constrained neural-optimiser-based sliding mode control. International Journal of Systems Science, 51(14):2653–2674, 2020. doi: 10.1080/00207721.2020.1799257.
[20] R. Afdila, F. Fahmi, and A. Sani. Distributed formation control for groups of mobile robots using consensus algorithm. Bulletin of Electrical Engineering and Informatics, 12(4):2095–2104, 2023. doi: 10.11591/eei.v12i4.3869.
[21] L.-D. Nguyen, H.-L. Phan, H.-G. Nguyen, and T.-L. Nguyen. Event-triggered distributed robust optimal control of nonholonomic mobile agents with obstacle avoidance formation, input constraints and external disturbances. Journal of the Franklin Institute, 360(8):5564–5587, 2023. doi: 10.1016/j.jfranklin.2023.02.033.
[22] Y.-H. Chang, C.-Y. Yang, W.-S. Chan, H.-W. Lin, and C.-W. Chang. Adaptive fuzzy sliding-mode formation controller design for multi-robot dynamic systems. I nternational Journal of Fuzzy Systems, 16(1):121–131, 2014.
[23] X. Chu, Z. Peng, G. Wen, and A. Rahmani. Robust fixed-time consensus tracking with application to formation control of unicycles. IET Control Theory & Applications, 12(1):53–59, 2018. doi: 10.1049/iet-cta.2017.0319.
[24] Y. Cheng, R. Jia, H. Du, G. Wen, and W. Zhu. Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback. International Journal of Robust and Nonlinear Control, 28(6):2082–2096, 2018. doi: 10.1002/rnc.4002.
[25] Y. Xie, X. Zhang, W. Meng, S. Zheng, L. Jiang, J. Meng, and S. Wang. Coupled fractional- order sliding mode control and obstacle avoidance of a four-wheeled steerable mobile robot. ISA Transactions, 108:282–294, 2021. doi: 10.1016/j.isatra.2020.08.025.
[26] J. Bai, G. Wen, A. Rahmani, and Y. Yu. Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay. International Journal of Systems Science, 46(13):2380–2392, 2015. doi: 10.1080/00207721.2014.998411.
[27] R. Cajo, M. Guinaldo, E. Fabregas, S. Dormido, D. Plaza, R. De Keyser, and C. Ionescu. Distributed formation control for multiagent systems using a fractional-order proportional–integral structure. IEEE Transactions on Control Systems Technology, 29(6):2738–2745, 2021. doi: 10.1109/TCST.2021.3053541.
[28] K.K. Ayten, M.H. Çiplak, and A. Dumlu. Implementation a fractional-order adaptive model-based pid-type sliding mode speed control for wheeled mobile robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233(8):1067–1084, 2019. doi: 10.1177/0959651819847395.
[29] D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo. Fractional Calculus: Models and Numerical Methods, volume 3. World Scientific, 2012.
[30] Y.-H. Chang, C.-W. Chang, C.-L. Chen, and C.-W. Tao. Fuzzy sliding-mode formation control for multirobot systems: design and implementation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2):444–457, 2011. doi: 10.1109/TSMCB.2011.2167679.
[31] W. Ren and Beard R.W. Distributed consensus in multi-vehicle cooperative control: Theory and applications. Springer, London, 2007.
[32] T.-L. Liao, J.-J. Yan, and W.-S. Chan. Distributed sliding-mode formation controller design for multirobot dynamic systems. Journal of Dynamic Systems, Measurement, and Control, 139(6):061008, 2017. doi: 10.1115/1.4035614.
Go to article

Authors and Affiliations

Allaeddine Yahia Damani
1
ORCID: ORCID
Zoubir Abdeslem Benselama
1
ORCID: ORCID
Ramdane Hedjar
2
ORCID: ORCID

  1. Laboratory of signal and image processing, Saad Dahlab University Blida 1, Blida, Algeria
  2. Center of Smart Robotics Research CEN, King Saud University, Riyadh, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical analysis of the thermal-flow characteristics for a laminar flow inside a rectangular microchannel. The flow of water through channels with thin obstacles mounted on opposite walls was analyzed. The studies were conducted with a low Reynolds number (from 20 to 200). Different heights of rectangular obstacles were analyzed to see if geometrical factors influence fluid flow and heat exchange in the microchannel. Despite of the fact that the use of thin obstacles in the microchannels leads to an increase in the pressure drop, the increase in the height of the obstacles favors a significant intensification of heat exchange with the maximum thermal gain factor of 1.9 for the obstacle height coefficient h/H=0.5, which could be acceptable for practical application.
Go to article

Bibliography

[1] Y.-T. Yang and S. Yang. Numerical study of turbulent flow in two-dimensional channel with surface mounted obstacle. International Journal of Heat and Mass Transfer, 37(18):2985–2991, 1994. doi: 10.1016/0017-9310(94)90352-2.
[2] K. Sivakumar, T. Sampath Kumar, S. Sivasankar, V. Ranjithkumar, and A. Ponshanmugakumar. Effect of rib arrangements on the flow pattern and heat transfer in internally ribbed rectangular divergent channels. Materials Today: Proceedings, 46(9):3379–3385, 2021. doi: 10.1016/j.matpr.2020.11.548.
[3] T.M. Liou, S.W. Chang, and S.P. Chan. Effect of rib orientation on thermal and fluid-flow features in a two-pass parallelogram channel with abrupt entrance. International Journal of Heat and Mass Transfer, 116:152–165, 2018. doi: 10.1016/j.ijheatmasstransfer.2017.08.094.
[4] W. Yang, S. Xue, Y. He, and W. Li. Experimental study on the heat transfer characteristics of high blockage ribs channel. Experimental Thermal and Fluid Science, 83:248–259, 2017. doi: 10.1016/j.expthermflusci.2017.01.016.
[5] F.B. Teixeira, M.V. Altnetter, G. Lorenzini, B.D. do A. Rodriguez, L.A.O. Rocha, L.A. Isoldi, and E.D. dos Santos. Geometrical evaluation of a channel with alternated mounted blocks under mixed convection laminar flows using constructal design. Journal of Engineering Thermophysics, 29(1): 92–113, 2020. doi: 10.1134/S1810232820010087.
[6] A. Korichi and L. Oufer. Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls. International Journal of Thermal Sciences, 44(7):644–655, 2005. doi: 10.1016/j.ijthermalsci.2004.12.003.
[7] L.C. Demartini, H.A. Vielmo, and S.V. Möller. Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2):153–159, 2004. doi: 0.1590/S1678-58782004000200006.
[8] Y.T. Yang and C.Z. Hwang. Calculation of turbulent flow and heat transfer in a porous-baffled channel. International Journal of Heat and Mass Transfer, 46(5):771–780, 2003. doi: 0.1016/S0017-9310(02)00360-5.
[9] G. Wang, T. Chen, M. Tian, and G. Ding. Fluid and heat transfer characteristics of microchannel heat sink with truncated rib on sidewall. International Journal of Heat and Mass Transfer, 148:119142, 2020. doi: 10.1016/j.ijheatmasstransfer.2019.119142.
[10] S. Mahjoob and S. Kashkuli. Thermal transport analysis of injected flow through combined rib and metal foam in converging channels with application in electronics hotspot removal. International Journal of Heat and Mass Transfer, 177:121223, 2021. doi: 10.1016/j.ijheatmasstransfer.2021.121223.
[11] L. Chai, G.D. Xia, and H.S. Wang. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Applied Thermal Engineering, 92:32–41, 2016. doi: 10.1016/j.applthermaleng.2015.09.071.
[12] Y. Yin, R. Guo, C. Zhu, T. Fu, and Y. Ma. Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles. Separation and Purification Technology, 236:116306, 2020. doi: 10.1016/j.seppur.2019.116306.
[13] A. Behnampour O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani, M. Zarringhalam, and R. Mashayekhi. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E: Low-Dimensional Systems and Nanostructures, 91:15–31, 2017. doi: 10.1016/j.physe.2017.04.006.
[14] M.R. Gholami, O.A. Akbari, A. Marzban, D. Toghraie, G.A.S. Shabani, and M. Zarringhalam. The effect of rib shape on the behavior of laminar flow of {oil/MWCNT} nanofluid in a rectangular microchannel. Journal of Thermal Analysis and Calorimetry, 134(3):1611–1628, 2018. doi: 10.1007/s10973-017-6902-3.
[15] O.A. Akbari, D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, and M. Dahari. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-{Al2O3} nanofluid in a rib-microchannel. Applied Mathematics and Computation, 290:135–153, 2016. doi: 10.1016/j.amc.2016.05.053.
[16] B. Mondal, S. Pati, and P.K. Patowari. Analysis of mixing performances in microchannel with obstacles of different aspect ratios. Journal of Process Mechanical Engineering, 233(5):1045–1051, 2019. doi: 10.1177/0954408919826748.
[17] L. Chai, G.D. Xia, and H.S. Wang. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls -- Part 2: Pressure drop. International Journal of Heat and Mass Transfer, 97:1081–1090, 2016. doi: 10.1016/j.ijheatmasstransfer.2016.02.076.
[18] P. Pontes, I. Gonçalves, M. Andredaki, A. Georgoulas, A.L.N. Moreira, and A.S. Moita. Fluid flow and heat transfer in microchannel devices for cooling applications: Experimental and numerical approaches. Applied Thermal Engineering, 218:119358, 2023. doi: 10.1016/j.applthermaleng.2022.119358.
[19] B.K. Srihari, A. Kapoor, S. Krishnan, and S. Balasubramanian. Computational fluid dynamics studies on the flow of fluids through microchannel with intentional obstacles. AIP Conference Proceedings, 2516(1):170003. doi: 10.1063/5.0108550.
[20] T. Grzebyk and A. Górecka-Drzazga. Vacuum microdevices. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(1):19–23, 2012. doi: 10.2478/v10175-012-0004-y.
[21] M. Kmiotek and A. Kucaba-Piętal. Influence of slim obstacle geometry on the flow and heat transfer in microchannels. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(2):111–118, 2018. doi: 10.24425/119064.
[22] S. Baheri Islami, B. Dastvareh, and R. Gharraei. An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers. International Journal of Heat and Mass Transfer, 78:917–929, 2014. doi: 10.1016/j.ijheatmasstransfer.2014.07.022.
[23] S. Baheri Islami, B. Dastvareh, and R. Gharraei. Numerical study of hydrodynamic and heat transfer of nanofluid flow in microchannels containing micromixer. International Communications in Heat and Mass Transfer, 43:146–154, 2013. doi: 10.1016/j.icheatmasstransfer.2013.01.002.
[24] C.K. Chung, C.Y. Wu, and T.R. Shih. Effect of baffle height and reynolds number on fluid mixing, Microsystem Technologies, 14(9-11):1317–1323, 2008, doi: 10.1007/s00542-007-0511-1.
[25] I. Adina R&D, Theory and Modling Guide, Vollume III: ADINA CFD&FSI, Report ARD. 2019.
[26] P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, 1998.
Go to article

Authors and Affiliations

Małgorzata Kmiotek
1
ORCID: ORCID
Robert Smusz
1
ORCID: ORCID

  1. Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The heat transfer coefficient during the pool boiling on the outside of a horizontal tube can be predicted by correlations. Our choice was based on ten correlations known from the literature. The experimental data were recovered from the recent work, for different fluids used. An evaluation was made of agreement between each of the correlations and the experimental data. The results of the present study firstly showed a good reliability for the correlations of Labuntsov [10], Stephan and Abdeslam [11] with deviations of 20% and 27%, respectively. Also, the results revealed acceptable agreements for the correlations of Kruzhlin [6], Mc Nelly [7] and Touhami [15] with deviations of 26%, 29% and 29% respectively. The remaining correlations showed very high deviations from the experimental data. Finally, improvements have been made in the correlations of Shekriladze [12] and Mostinski [9], and a new correlation was proposed giving convincing results.
Go to article

Bibliography

[1] I.L. Pioro, W. Rohsenow, and S.S. Doerffer. Nucleate pool-boiling heat transfer. II: Assessment of prediction methods. International Journal of Heat and Mass Transfer, 47(23):5045–5057, 2004. doi: 10.1016/j.ijheatmasstransfer.2004.06.020.
[2] A. Sathyabhama and R.N. Hegde. Prediction of nucleate pool boiling heat transfer coefficient. Thermal Science, 14(2):353–364, 2010. doi: 10.2298/TSCI1002353S.
[3] T. Baki, A. Aris, and M. Tebbal. Investigations on pool boiling of refrigerant R141b outside a horizontal tube, Archive of Mechanical Engineering, 68(1):77–92, 2021. doi: 10.24425/ame.2021.137042.
[4] T. Baki. Survey on the nucleate pool boiling of hydrogen and its limits. Journal of Mechanical and Energy Engineering, 4(2):157–166, 2020. doi: 10.30464/jmee.2020.4.2.157.
[5] T. Baki. Pool boiling of ammonia, assessment of correlations. International Journal of Air-Conditioning and Refrigeration, 29(02):2150012, 2021. doi: 10.1142/S2010132521500127.
[6] G.N. Kruzhilin. Free-convection transfer of heat from a horizontal plate and boiling liquid. Doklady AN SSSR (Reports of the USSR Academy of Sciences), 58(8):1657–1660, 1947.
[7] M.J. Mc Nelly. A correlation of rates of heat transfer to nucleate boiling of liquids. Journal of Imperial College Chemical Engineering Socoiety, 7:187–34, 1953.
[8] H.K. Forster, and N. Zuber. Dynamics of vapor bubbles and boiling heat transfer. AIChE Journal, 1(4):531–535, 1955. doi: 10.1002/aic.690010425.
[9] I.L. Mostinski. Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. Teploenergetika, 4(4):66–71, 1963.
[10] D.A. Labuntsov. Heat transfer problems with nucleate boiling of liquids. Thermal Engineering, 19(9):21–28, 1972.
[11] K. Stephan, and M. Abdelsalam. Heat-transfer correlations for natural convection boiling. International Journal of Heat and Mass Transfer, 23(1):73–87, 1980. doi: 10.1016/0017-9310(80)90140-4.
[12] I.G. Shekriladze. Boiling heat transfer: mechanisms, models, correlations and the lines of further research. The Open Mechanical Engineering Journal, 2:104–127, 2008. doi: 10.2174/1874155X00802010104.
[13] V.V. Yagov. Nucleate boiling heat transfer: Possibilities and limitations of theoretical analysis. Heat and Mass Transfer, 45(7):881–892, 2009. doi: 10.1007/s00231-007-0253-8.
[14] S. Fazel and S. Roumana. Pool boiling heat transfer to pure liquids. In WSEAS Conf, 2010.
[15] T. Baki, A. Aris, and M. Tebbal. Proposal for a correlation raising the impact of the external diameter of a horizontal tube during pool boiling. International Journal of Thermal Sciences, 84:293–299, 2014. doi: 10.1016/j.ijthermalsci.2014.05.023.
[16] M.G. Kang. Effect of surface roughness on pool boiling heat transfer. International Journal of Heat and Mass Transfer, 43(22):4073–4085, 2000. doi: 10.1016/S0017-9310(00)00043-0.
[17] M.G. Kang. Local pool boiling coefficients on a horizontal tubes. Journal of Mechanical Science and Technology, 19(3):860–869, 2005. doi: 10.1007/BF02916134.
[18] J.S. Mehta and S.G. Kandlikar. Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part II: Experimental results and bubble dynamics for circumferential V-groove and axial rectangular open microchannels. International Journal of Heat and Mass Transfer, 64:1216–1225, 2013. doi: 10.1016/j.ijheatmasstransfer.2013.04.004.
[19] S.K. Das, N. Putra, and W. Roetzel. Pool boiling of nano-fluids on horizontal narrow tubes. International Journal of Multiphase Flow, 29(8):1237–1247, 2003. doi: 10.1016/S0301-9322 (03)00105-8.
[20] G. Prakash Narayan, K.B. Anoop, G. Sateesh, and S.K. Das. Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions. International Journal of Multiphase Flow, 34(2):145–160, 2008. doi: 10.1016/j.ijmultiphaseflow.2007.08.004.
[21] D. Gorenflo, F. Gremer, E. Danger, and A. Luke. Pool boiling heat transfer to binary mixtures with miscibility gap: Experimental results for a horizontal copper tube with 4.35~mm O.D. Experimetal Thermal Fluides Sciences, 25(5):243–254, 2001. doi: 10.1016/S0894-1777(01)00072-3.
[22] Z.H. Liu and Y.H. Qiu. Enhanced boiling heat transfer in restricted spaces of a compact tube bundle with enhanced tubes. Applied Thermal Engineering, 22(17):1931–1941, 2002. doi: 10.1016/S1359-4311(02)00111-4.
[23] Y.H. Qiu and Z.H. Liu. Boiling heat transfer of water on smooth tubes in a compact staggered tube bundle. Applied Thermal Engineering, 24(10):1431–1441, 2004. doi: 10.1016/j.applthermaleng.2003.11.021.
[24] K.G. Rajulu, R. Kumar, B. Mohanty, and H. K. Varma. Enhancement of nucleate pool boiling heat transfer coefficient by reentrant cavity surfaces. Heat and Mass Transfer, 41(2):127–132, 2004. doi: 10.1007/s00231-004-0526-4.
[25] A. Fazel, A. Safekordi, and M. Jamialahmadi. Pool boiling heat transfer in water/amines solutions. International Journal of Engineering, 21(2):113–130, 2008.
[26] S.M. Peyghambarzadeh, M. Jamialahmadi, S.A. Alavi Fazel, and S. Azizi. Experimental and theoretical study of pool boiling heat transfer to amine solutions. Brazilian Journal of Chemical Engineering, 26:26–33, 2009. doi: 10.1590/S0104-66322009000100004.
[27] S. Bhaumik, V.K. Agarwal, and S.C. Gupta. A generalized correlation of nucleate pool boiling of liquids. Indian Journal of Chemical Technology, 2004.
[28] W.C. Elrod, J.A. Clark, E.R. Lady, and H. Merte. Boiling heat transfer data at low heat flux. Journal of Heat Transfer, 87(C):235–243, 1967.
[29] Y. Chen, M. Groll, R. Mertz, and R. Kulenovic. Pool boiling heat transfer of propane, isobutane and their mixtures on enhanced tubes with reentrant channels. International Journal of Heat and Mass Transfer, 48(11):2310–2322, 2005. doi: 10.1016/j.ijheatmasstransfer.2004.10.037.
[30] D. Jung, H. Lee, D. Bae, and S. Oho. Nucleate boiling heat transfer coefficients of flammable refrigerants, International Journal of Refrigeration, 27(4):409–414, 2004. doi: 10.1016/j.ijrefrig.2003.11.007.
[31] J.X. Zheng, G.P. Jin, M.C. Chyu, and Z.H. Ayub. Boiling of ammonia/lubricant mixture on a horizontal tube in a flooded evaporator with inlet vapor quality. {\em Experimental Thermal Fluides Sciences, 30(3):223–231, 2006. doi: 10.1016/j.expthermflusci.2005.06.001.
[32] V. Trisaksri, and S. Wongwises. Nucleate pool boiling heat transfer of TiO2-R141b nanofluids. International Journal of Heat and Mass Transfer, 52(5-6):1582–1588, 2009. doi: 10.1016/j.ijheatmasstransfer.2008.07.041.
[33] J.M.S. Jabardo, G. Ribatski, and E. Stelute. Roughness and surface material effects on nucleate boiling heat transfer from cylindrical surfaces to refrigerants R-134a and R-123. Experimetal Thermal Fluides Sciences, 33(4):579–590, 2009. doi: 10.1016/j.expthermflusci.2008.12.004.
[34] D. Jung, K. An, and J. Park. Nucleate boiling heat transfer coefficients of HCFC22, HFC134a, HFC125 and HFC32 on various enhanced tubes. International Journal of Refrigeration, 27(2):202–206, 2004. doi: 10.1016/S0140-7007(03)00124-5.
[35] S.P. Rocha, O. Kannengieser, E.M. Cardoso, and J.C. Passos. Nucleate pool boiling of R-134a on plain and micro-finned tubes. International Journal of Refrigeration, 36(2):456–464, 2013. doi: 10.1016/j.ijrefrig.2012.11.031.
Go to article

Authors and Affiliations

Touhami Baki
1
ORCID: ORCID
Djamel Sahel
2
ORCID: ORCID

  1. Mechanical Faculty, Gaseous Fuels and Environment Laboratory, USTO-MB, El-M'Naouer, Oran, Algeria
  2. Department of Technical Sciences, Amar Telidji of Laghouat, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The finite element method (FEM) using Ansys program (APDL) was used in this study to evaluate the idea of tuned vibration absorbers applied to a beam construction for the undamped system. The ideal location for the Dynamic Vibration Absorbers (DVAs) and their numbers to be installed on the fixed-fixed beam in order to lessen beam vibration was also investigated. The DVA was coupled to the fixed-fixed beam vibration node for three vibration modes. The natural frequency and frequency response of the beam were calculated in this study using modal and harmonic analysis, respectively. The vibrational characteristics of the F-F beam with and without DVAs were presented. The simulation results demonstrated that the vibration amplitude decreases in the presence of the DVAs and its reduction depends on the locations of the DVAs and its number. In addition, the attached DVAs affect the structural beam vibration. Depending on the modes of vibration, the vibrational peak is the optimal place to attach DVA.
Go to article

Bibliography

[1] C.Y. Wang and C.M. Wang. Structural Vibration: Exact Solutions for Strings, Membranes, Beam and Plate. CRC Press, 2014.
[2] S.S. Rao. Mechanical Vibrations, 4th ed. Pearson Prentice Hall, 2005.
[3] D.J. Inman. Engineering Vibrations, 3rd ed. Prentice Hall, 2008.
[4] C.L. Lee, Y.T. Chen, L.L. Chung, and Y.P. Wang. Optimal design theories and applications of tuned mass dampers. Engineering Structures, 28(1):43–53. 2006. doi: 10.1016/j.engstruct.2005.06.023.
[5] J.R. Sladek and R.E. Klingner. Effect of tuned-mass dampers on seismic response. Journal of Structural Engineering, 109(8):2004–2009, 1983. doi: 10.1061/(ASCE)0733-9445(1983)109:8(2004).
[6] K.T. Tse, K.C. Kwok, and Y. Tamura. Performance and cost evaluation of a smart tuned mass damper for suppressing wind-induced lateral-torsional motion of tall structures. Journal of Structural Engineering, 138(4):514–525, 2012. doi: 10.1061/(ASCE)ST.1943-541X.0000486.
[7] H. Shi, R. Luo, P. Wu, J. Zeng, and J. Guo. Application of DVA theory in vibration reduction of the car body with suspended equipment for high-speed EMU. Science China Technological Sciences, 57(7):1425–1438, 2014. doi: 10.1007/s11431-014-5558-5.
[8] M.H. Zainulabidin and N. Jaini. Transverse vibration of a beam structure attached with dynamic vibration absorbers: Experimental analysis. International Journal of Engineering \amp; Technology, 12(6):82–86, 2012.
[9] N.A.M. Jusoh. Finite Element Analysis of a Beam Structure Attached with Tuned Vibration Absorbers. Ph.D. Thesis, University Tun Hussein Onn Malaysia, 2015.
[10] M.M. Salleh and I. Zaman. Finite element modelling of fixed-fixed end plate attached with a vibration absorber. Applied Mechanics and Materials,773-774:194–198, 2015. doi: 10.4028/www.scientific.net/AMM.773-774.194.
[11] W.S. Ong and M.H. Zainulabidin. Vibration Characteristics of beam structure attached with vibration absorbers at its vibrational node and antinode by finite element analysis. Journal of Science and Engineering, 1(1):7–16, 2020. doi: 10.30650/jse.v1i1.519.
[12] M.H.B. Zainulabidin and N. Jaini. Vibration analysis of a beam structure attached with a dynamic vibration absorber. Applied Mechanics and Materials. 315:315–319, 2013. doi: 10.4028/www.scientific.net/AMM.315.315.
[13] S.A.M. Rozlan, I. Zaman, S.W. Chan, B. Manshoor, A. Khalid, and M.S.M. Sani. Study of a simply-supported beam with attached multiple vibration absorbers by using finite element analysis. Advanced Science Letters, 23(5):3951–3954, 2017. doi: 10.1166/asl.2017.8302.
[14] S.K. Sharma, R.C., Sharma, J. Lee, and H.L. Jang. Numerical and experimental analysis of {DVA} on the flexible-rigid rail vehicle car body resonant vibration. Sensors, 22(5):1922, 2022. doi: 10.3390/s22051922.
[15] C.L. Bacquet and M.I. Hussein. Dissipation engineering in metamaterials by localized structural dynamics. arXiv preprint arXiv:1809.04509, 2018.
[16] M.V. Bastawrous and M.I. Hussein. Theoretical band-gap bounds and coupling sensitivity for a waveguide with periodically attached resonating branches. Journal of Sound and Vibration, 514:116428, 2021. doi: 10.1016/j.jsv.2021.116428.
[17] L. Cveticanin and G. Mester. Theory of acoustic metamaterials and metamaterial beams: an overview. Acta Polytechnica Hungarica, 13(7):43–62, 2016.
[18] Y. Song, J. Wen, H. Tian, X. Lu, Z. Li, and L. Feng. Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study. Journal of Sound and Vibration, 489:115644, 2020. doi: 10.1016/j.jsv.2020.115644.
[19] Y. Sun, J. Zhou, D. Gong, and Y. Ji. Study on multi-degree of freedom dynamic vibration absorber of the car body of high-speed trains. Mechanical Sciences, 13(1):239–256, 2021. doi: 10.5194/ms-13-239-2022.
[20] J. Song, P. Si, H. Hua, and Z. Li. A DVA-beam element for dynamic simulation of DVA-beam system: modelling, validation and application. Symmetry, 14(8):1608, 2022. doi: 10.3390/sym14081608.
[21] J.E. Akin. Finite Element Analysis Concepts Via SolidWorks, 1st ed. World Scientific Publishing Co., 2010.
[22] J. Fish and T. Belytschko. A First Course in Finite Elements. Wiley. 2007.
[23] J.P. Hartog, den. Mechanical Vibrations. McGraw-Hill, 1956.
[24] J.B. Hunt. Dynamic Vibration Absorbers, Mechanical Engineering Publications, London, 1979.
[25] B.G. Korenev and L.M. Reznikov. Dynamic Vibration Absorbers. Wiley, 1993.
[26] R.G. Jacquot. Optimal dynamic vibration absorbers for general beam systems. Journal of Sound and Vibration, 60(4):535–542, 1978. doi: 10.1016/S0022-460X(78)80090-X.
Go to article

Authors and Affiliations

Faris A. Jabbar
1 2
ORCID: ORCID
Putti Srinivasa Rao
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Andhra University, Visakhapatnam, India
  2. Technical Institute of Al-Dewaniyah, Al-Furat Al-Awsat Technical University (ATU), Al-Dewaniyah, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Spark plasma sintering (SPS) is a promising modern technology that sinters a powder, whether it is ceramic or metallic, transforming it into a solid. This technique applies both mechanical pressure and a pulsed direct electric current simultaneously. This study presents a three-dimensional (3D) numerical investigation of the thermoelectric (thermal and electric current density fields) and mechanical (strain-stress and displacement fields) couplings during the SPS process of two powders: alumina (ceramic) and copper (metallic). The ANSYS software was employed to solve the conservation equations for energy, electric potential, and mechanical equilibrium simultaneously. Initially, the numerical findings regarding the thermoelectric and mechanical coupling phenomena observed in the alumina and copper specimens were compared with existing numerical and experimental results from the literature. Subsequently, a comprehensive analysis was conducted to examine the influence of current intensity and applied pressure on the aforementioned coupling behavior within the SPS device. The aim was to verify and clarify specific experimental values associated with these parameters, as reported in the literature, and identify the optimal values of applied pressure (5 MPa for alumina and 8.72 MPa for copper) and electric current (1000 A for alumina and 500 A for copper) to achieve a more homogeneous material.
Go to article

Bibliography

[1] C. Wang, L. Cheng, and Z. Zhao. FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation. Computational Materials Science, 49(2):351–362, 2010. doi: 10.1016/j.commatsci.2010.05.021.
[2] M. Fattahi, M.N. Ershadi, M. Vajdi, F.S. Moghanlou, and A.S. Namini. On the simulation of spark plasma sintered TiB2 ultra high temperature ceramics: A numerical approach. Ceramics International, 46(10A):14787–14795, 2020. doi: 10.1016/j.ceramint.2020.03.003.
[3] A. Pavia, L. Durand, F. Ajustron, V. Bley, G. Chevallier, A. Peigney, and C. Estournès. Electro-thermal measurements and finite element method simulations of a spark plasma sintering device. Journal of Materials Processing Technology, 213(8):1327–1336, 2013. doi: 10.1016/j.jmatprotec.2013.02.003.
[4] E.A. Olevsky, C. Garcia-Cardona, W.L. Bradbury, C.D. Haines, D.G. Martin, and D. Kapoor. Fundamental aspects of spark plasma sintering: II. Finite element analysis of scalability. Journal of the American Ceramics Society, 95(8):2414–2422, 2012. doi: 10.1111/j.1551-2916.2012.05096.x.
[5] D. Tiwari, B. Basu, and K. Biswas. Simulation of thermal and electric field evolution during spark plasma sintering. Ceramics International, 35:699–708, 2009. doi: 10.1016/j.ceramint.2008.02.013.
[6] X. Wang, S.R. Casolco, G. Xu, and J.E. Garay. Finite element modeling of electric current-activated sintering: The effect of coupled electrical potential, temperature and stress. Acta Materialia, 55(10):3611–3622, 2007. doi: 10.1016/j.actamat.2007.02.022.
[7] G. Maizza, S. Grasso, Y. Sakka, T. Noda, and O. Ohashi. Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Science and Technology of Advanced Materials, 8(7-8):644–654, 2007. doi: 10.1016/j.stam.2007.09.002.
[8] G. Garcia and E. Olevsky. Numerical simulation of spark plasma sintering. Advances in Science and Technology, 63:58–61, 2010.doi: 10.4028/www.scientific.net/AST.63.58.
[9] K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Vanderbiest. Modelling of the temperature distribution during field assisted sintering. Acta Materialia, 53:4379–4388, 2005. doi: 10.1016/j.actamat.2005.05.042.
[10] A. Cincotti, A.M. Locci, R. Orrù, and G. Cao. Modeling of SPS apparatus: Temperature, current and strain distribution with no powders. AIChE Journal, 53(3):703–719, 2007. doi: 10.1002/aic.11102.
[11] A. Zavaliangos, J. Zhang, M. Krammer, and J. Groza. Temperature evolution during field activated sintering. Materials Science and Engineering: A, 379(1-2):218–228, 2004. doi: 10.1016/j.msea.2004.01.052.
[12] S. Muñoz and U. Anselmi-Tamburini. Temperature and stress fields evolution during spark plasma sintering processes. Journal of Materials Science, 45:6528–6539, 2010. doi: 10.1007/s10853-010-4742-7.
[13] C. Wolff, S. Mercier, H. Couque, and A.Molinari. Modeling of conventional hot compaction and Spark Plasma Sintering based on modified micromechanical models of porous materials. Mechanics of Materials, 49:72–91, 2012. doi: 10.1016/j.mechmat.2011.12.002.
[14] C. Manière, G. Lee, J. McKittrick, and E. Olevsky. Energy efficient spark plasma sintering: breaking the threshold of large dimension tooling energy consumption. Journal of the American Ceramics Society, 102(2):706–716, 2019. doi: 0.1111/jace.16046.
[15] W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, and Z.A. Munir. Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Materials Science and Engineering: A, 394(1-2):132–138, 2005. doi: 10.1016/j.msea.2004.11.020.
[16] I. Sulima, G. Boczkal, and P. Palka. Mechanical properties of composites with titanium diboride fabricated by spark plasma sintering. Archives of Metallurgy and Materials, 62(3):1665–1671, 2017. doi: 10.1515/amm-2017-0255.
[17] D. Bubesh Kumar, B. Selva babu, K.M. Aravind Jerrin, N. Joseph, and A. Jiss. Review of spark plasma sintering process. IOP Conference Series: Materials Science and Engineering, 993:012004, 2020. doi: 10.1088/1757-899X/993/1/012004.
[18] P.Yu. Nikitin, I.A. Zhukov, and A.B. Vorozhtsov. Decomposition mechanism of AlMgB14 during the spark plasma sintering. Journal of Materials Research and Technology, 11:687–692, 2021. doi: 10.1016/j.jmrt.2021.01.044.
[19] M. Stuer, P. Bowen, and Z. Zhao. Spark plasma sintering of ceramics: from modeling to practice. Ceramics, 3(4):476–493, 2020. doi: 10.3390/ceramics3040039.
[20] U. Anselmi-Tamburini, S. Gennari, J.E. Garay, and Z.A. Munir. Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions. Materials Science and Engineering: A, 394(1-2):139–148,2005. doi: 10.1016/j.msea.2004.11.019.
[21] G. Lee, E. Olevsky, C. Manière, A. Maximenko, O. Izhvanov, C. Back, and J. McKittrick. Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering. Acta Materialia, 144:524–533, 2017. doi: 10.1016/j.actamat.2017.11.010.
[22] A. Annamalai, M. Srikanth, A. Muthuchamy, S. Acharya, A. Khisti, D. Agrawal, and C. Jen. Spark plasma sintering and characterization of Al-TiB2 composites. Metals, 10(09):1110, 2020. doi: 10.3390/met10091110.
[23] G. Molenat, L. Durand, J. Galy, and A. Couret. Temperature control in spark plasma sintering: An FEM approach. Journal of Metallurgy, 2010:145431, 2020. doi: 10.1155/2010/145431.
[24] J. Gurt Santanach, A. Weibel, C. Estournès, Q. Yang, C. Laurent, and A.Peigney. Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth. Acta Materialia, 59:1400–1408, 2011. doi: 10.1016/j.actamat.2010.11.002.
[25] S. Deng, R. Li, T. Yuan, and P. Cao. Effect of electric current on crystal orientation and its contribution to densification during spark plasma sintering. Materials Letters, 229:126–129, 2018. doi: 10.1016/j.matlet.2018.07.001.
[26] Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science, 41:763–777, 2006. doi: 10.1007/s10853-006-6555-2.
[27] S. Grasso, P. Poetschke, V. Richter, G. Maizza, Y. Sakka, and M. Reece. Low-temperature spark plasma sintering of pure nano WC powder. Journal of the American Ceramic Society, 96(6):1702–1705, 2013. doi: 10.1111/jace.12365.
[28] M.M. Shahraki, M.D. Chermahini, M. Abdollahi, R. Irankhah, P. Mahmoudi, and E. Karimi. Spark plasma sintering of SnO2 based varistors. Ceramics International, 46(12):20429–20436, 2020. doi: 10.1016/j.ceramint.2020.05.135.
[29] F. Mechighel, G. Antou, B. Pateyron, A. Maître, and M. El Ganaoui. Simulation numérique du couplage électrique, thermique et mécanique lors du frittage ``flash'' de matériaux céramiques et métalliques. Congrès Français de Thermique/Actes, 2008. https://www.sft.asso.fr/document.php?pagendx=10430.
[30] F. Mechighel, A. Maître, B. Pateyron, M. El Ganaoui, and M. Kadja. Evolution de la température lors du processus du frittage ``flash''. Congrès Français de Thermique/Actes, 2009. https://www.sft.asso.fr/document.php?pagendx=9830.
[31] S.O. Jeje, M.B. Shongwe, A.L. Rominiyi, and P.A. Olubambi. Spark plasma sintering of titanium matrix composite – a review. The International Journal of Advanced Manufacturing Technology, 117:2529–2544, 2021. doi: 10.1007/s00170-021-07840-7.
[32] E. Bódis and Z. Károly. Fabrication of graded alumina by spark plasma sintering. The International Journal of Advanced Manufacturing Technology, 117:2835–2843, 2021. doi: 10.1007/s00170-021-07855-0.
[33] ANSYS software (16.2) [ANSYS Workbench]. (2015). https://www.ansys.com.
[34] R.J. Chowdhury. Numerical Study of the Process Parameters in Spark Plasma Sintering (SPS). Master of Science Thesis, Faculty of the Graduate College of the Oklahoma State University, 2013.
[35] CES EduPack software, Granta Design Limited, Cambridge, UK (2019). Ansys (CES) Granta EduPack. https://www.ansys.com/products/materials/granta-edupack.
[36] F. Mechighel, M. El Ganaoui, M. Kadja, B. Pateyron, and S. Dost. Numerical simulation of three dimensional low Prandtl liquid flow in a parallelepiped cavity under an external magnetic field. Fluid Dynamics \amp; Materials Processing, 5(4):313–330, 2009. doi: 10.3970/fdmp.2009.005.313.
[37] C. Manière, A. Pavia, L. Durand, G. Chevalier, K. Afanga, and C. Estournès. Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process. Journal of the European Ceramic Society, 36(3):741–748, 2016. doi: 10.1016/j.jeurceramsoc.2015.10.033.
[38] G. Antou, G. Mathieu, G. Trolliard, and A. Maître. Spark plasma sintering of zirconium carbide and oxycarbide: Finite element modeling of current density, temperature, and stress distributions. Journal of Materials Research, 24:404–414, 2009. doi: 10.1557/JMR.2009.0039.
[39] K.N. Zhu, A. Godfrey, N. Hansen, and X.D. Zhang. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering. Materials \amp; Design, 117:95–103, 2017. doi: 10.1016/j.matdes.2016.12.042.
[40] C. Arnaud, C. Manière, G. Chevallier, C. Estournès, R. Mainguy, F. Lecouturier, D. Mesguich, A. Weibel, L. Durand, and C. Laurent. Dog-bone copper specimens prepared by one-step spark plasma sintering. Journal of Materials Science, 50:7364–7373, 2015. doi: 10.1007/s10853-015-9293-5.
[41] J. Diatta, G. Antou, N. Pradeilles, and A. Maître. Numerical modeling of spark plasma sintering – Discussion on densification mechanism identification and generated porosity gradients. Journal of the European Ceramic Society, 37(15):4849–4860, 2017. doi: 10.1016/j.jeurceramsoc.2017.06.052.
Go to article

Authors and Affiliations

Abdelmalek Kriba
1
ORCID: ORCID
Farid Mechighel
1 2
ORCID: ORCID

  1. LR3MI Laboratory, Mechanical Engineering Department, Faculty of Technology, Badji Mokhtar - Annaba University, Annaba , Algeria
  2. Energy and Pollution Laboratory - Mentouri Brothers University - Constantine, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Individual movement of plankton in the ocean is related to trophic relationships between dominant groups. Collective movement is a consequence of the movement of water masses, diurnal cycles and global movement of ocean currents, and climate change
Go to article

Authors and Affiliations

Stanisław Rakusa-Suszczewski
1

  1. członek rzeczywisty PAN
Download PDF Download RIS Download Bibtex

Abstract

On 28 March 2023, the first ESP EASAC meeting in 2023 took place in Budapest at the invitation of the Hungarian Academy of Sciences. The broad and interesting range of issues addressed by Environmental Steering Panel should attract more interest also in Poland. Unfortunately, the activity in EASAC is pro publico bono, which is probably the main reason for the low activity of Polish scientists as experts invited to individual projects. Is the organisation referred to in this article credible? The answer is that, at the end of 2018, EASAC was awarded “Think Tank of the Year” by the prestigious Public Affairs Awards Europe. This shows that the activity is appreciated among professionals. I sincerely encourage anyone interested to find out more about what ESP EASAC is doing and to keep checking our activities.
Go to article

Authors and Affiliations

Rajmund Michalski
1

  1. Instytut Podstaw Inżynierii Środowiska PAN, Zabrze

This page uses 'cookies'. Learn more