Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Evaluating soil strength by geophysical methods using P-waves was undertaken in this study to assess the effects of changed binder ratios on stabilization and compression characteristics. The materials included dredged sediments collected in the seabed of Timrå region, north Sweden. The Portland cement (Basement CEM II/A-V, SS EN 197-1) and ground granulated blast furnace slag (GGBFS) were used as stabilizers. The experiments were performed on behalf of the Svenska Cellulosa Aktiebolaget (SCA) Biorefinery Östrand AB pulp mill. Quantity of binder included 150, 120 and 100 kg. The properties of soil were evaluated after 28, 42, 43, 70, 71 and 85 days of curing using applied geophysical methods of measuring the travel time of primary wave propagation. The P-waves were determined to evaluate the strength of stabilized soils. The results demonstrated variation of P-waves velocity depending on stabilizing agent and curing time in various ratios: Low water/High binder (LW/HB), High water/Low binder (HW/LB) and percentage of agents (CEM II/A-V/GGBFS) as 30%/70%, 50%/50% and 70%/30%. The compression characteristics of soils were assessed using uniaxial compressive strength (UCS). The P-wave velocities were higher for samples stabilized with LW/HB compared to those with HW/LB. The primary wave propagation increased over curing time for all stabilized mixes along with the increased UCS, which proves a tight correlation with the increased strength of soil solidified by the agents. Increased water ratio gives a lower strength by maintained amount of binder and vice versa.

Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Swedish Transport Administration, Gibraltargatan 7, Malmö, Sweden
  2. Lund University, Division of Building Materials, Box 118, SE- 221-00, Lund, Sweden
  3. Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis (LISA). Campus de Solbosch - CP 165/57, Avenue Franklin D. Roosevelt 50, B-1050 Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

Low-Density Parity-Check (LDPC) codes are among the most effective modern error-correcting codes due to their excellent correction performance and highly parallel decoding scheme. Moreover, the nonbinary extension of such codes further increases performance in the short-block regime. In this paper, we review the key elements for the construction of implementation-oriented binary and nonbinary codes. These Quasi-Cyclic LDPC (QC-LDPC) codes additionally feature efficient encoder and decoder implementation frameworks. We then present a versatile algorithm for the construction of both binary and nonbinary QC-LDPC codes that have low encoding complexity and an optimized corresponding graph structure. Our algorithm uses a progressive edge growth algorithm, modified for QC-LDPC graph construction, and then performs an iterative global search for optimized cyclic shift values within the QC-LDPC circulants. Strong error correction performance is achieved by minimizing the number of short cycles, and cycles with low external connectivity, within the code graph. We validate this approach via error rate simulations of a transmission system model featuring an LDPC coder-decoder, digital modulation, and additive white Gaussian noise channels. The obtained numerical results validate the effectiveness of the proposed construction algorithm, with a number of constructed codes exhibiting either similar or superior performance to industry standard binary codes and selected nonbinary codes from the literature.
Go to article

Authors and Affiliations

Wojciech Sułek
1
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland

This page uses 'cookies'. Learn more