Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Fog networks facilitate ultra-low latency through the use of data availability near the network edge in fog servers. Existing work in fog networks considers the objective of energy efficiency and low latency for internet-of-things (IoT) for resource allocation. These works provide solutions to energy efficiency and low latency resource allocation problem without consideration of secure communication. This article investigates the benefits of fog architecture from the perspective of three promising technologies namely device-to-device (D2D) communication, caching, and physical layer security. We propose security provisioning followed by mode selection for D2D-assisted fog networks. The secrecy rate maximization problem is formulated first, which belongs to mixed-integer nonlinear programming (MINLP) problem. It is NP-hard, that is why an exhaustive search for finding the solution is complex. Keeping in view the complexity, a nonlinear technique namely outer approximation algorithm (OAA) is applied. OAA is a traditional algorithm, whose results are compared with the proposed heuristic algorithm, namely the security heuristic algorithm (SHA). Performance of the network is observed for the different numbers of eavesdroppers, IoT nodes, and fog nodes.
Go to article

Authors and Affiliations

Rabeea Basir
1
ORCID: ORCID
Naveed Ahmad Chughtai
2
Mudassar Ali
2 3
Saad Qaisar
1 4
Anas Hashmi
4

  1. School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology, Islamabad, Pakistan
  2. Military College of Signals, National University of Sciences and Technology, Rawalpindi, Pakistan
  3. Telecommunication Engineering Department, University of Engineering and Technology, Taxila
  4. Department of Electrical and Electronic Engineering, University of Jeddah, Jeddah, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

The paper is a structured, in-depth analysis of dual active bridge modeling. In the research new, profound dual active bridge converter (DAB) circuit model is presented. Contrary to already described idealized models, all critical elements including numerous parasitic components were described. The novelty is the consideration of a threshold voltage of diodes and transistors in the converter equations. Furthermore, a lossy model of leakage inductance in an AC circuit is also included. Based on the circuit equations, a small-signal dual active bridge converter model is described. That led to developing control of the input and output transfer function of the dual active bridge converter model. The comparison of the idealized model, circuit simulation (PLECS), and an experimental model was conducted methodically and confirmed the high compatibility of the introduced mathematical model with the experimental one. Proposed transfer functions can be used when designing control of systems containing multiple converters accelerating the design process, and accurately reproducing the existing systems, which was also reported in the paper.
Go to article

Authors and Affiliations

Roman Barlik
1
Piotr Grzejszczak
1
Mikołaj Koszel
1

  1. Warsaw University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Fault location, isolation and self-restoration (FLISR) automation is an essential component of smart grids concept. It consists of a high level of comprehensive automation and monitoring of the distribution grid improving the quality of energy supplied to customers. This paper presents an algorithm for decentralized FLISR architecture with peer-to-peer communication using IEC 61860 GOOSE messages. An analysis of short circuit detection was presented due to the method of the grid earthing system. The proposed automation model was built based on communication logic between configured intelligent electronic devices (IED) from ABB and Siemens. The laboratory tests were conducted in a half-loop grid model with a bilateral power supply (typical urban grid). The laboratory research concerned three locations of short circuits: between substation and section point, between two section points and between section point and normally open point (NOP). The logic implementation was developed using State Sequencer software offered by Test Universe.
Go to article

Authors and Affiliations

Paweł Bielenica
1
Joanna Widzińska
2
Artur Łukaszewski
2
ORCID: ORCID
Łukasz Nogal
2
ORCID: ORCID
Piotr Łukaszewski
2

  1. ENCO Sp. z o.o., Poste˛ pu 13, 02-676 Warsaw, Poland
  2. Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept of a new turbine engine with the use of rotating isochoric combustion chambers. In contrast to previously analyzed authors’ engine concepts, here rotating combustion chambers were used as a valve timing system. As a result, several practical challenges could be overcome. An effective ceramic sealing system could be applied to the rotating combustion chambers. It can assure full tightness regardless of thermal conditions and related deformations. The segment sealing elements working with ceramic counter-surface can work as self-alignment because of the centrifugal force acting on them. The isochoric combustion process, gas expansion, and moment generation were analyzed using the CFD tool (computational fluid dynamics). The investigated engine concept is characterized by big energy efficiency and simple construction. Finally, further improvements in engine performance are discussed.
Go to article

Authors and Affiliations

Piotr Tarnawski
1
ORCID: ORCID
Wiesław Ostapski
1

  1. Institute of Machine Design Fundamentals, Warsaw University of Technology, Narbutta 84, 02-524 Warsaw, Poland

This page uses 'cookies'. Learn more