Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We analyze the Google-Apple exposure notification mechanism designed by the Apple-Google consortium and deployed on a large number of Corona-warn apps. At the time of designing it, the most important issue was time-to-market and strict compliance with the privacy protection rules of GDPR. This resulted in a plain but elegant scheme with a high level of privacy protection. In this paper we go into details and propose some extensions of the original design addressing practical issues. Firstly, we point to the danger of a malicious cryptographic random number generator (CRNG) and resulting possibility of unrestricted user tracing. We propose an update that enables verification of unlinkability of pseudonymous identifiers directly by the user. Secondly, we show how to solve the problem of verifying the “same household” situation justifying exempts from distancing rules. We present a solution with MIN-sketches based on rolling proximity identifiers from the Apple-Google scheme. Thirdly, we examine the strategies for revealing temporary exposure keys. We have detected some unexpected phenomena regarding the number of keys for unbalanced binary trees of a small size. These observations may be used in case that the size of the lists of diagnosis keys has to be optimized.
Go to article

Bibliography

  1. Ministry of Health and Government Technology Agency (GovTech), Trace Together Programme, [Online]. Available: https://www. tracetogether.gov.sg.
  2. The European Parliament and the Council of the European Union: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/ec (General Data Protection Regulation). Official Journal of the European Union, L119.1, 4.5.2016.
  3. Corona-Warn-App Consortium, [Online]. Available: https://www.coronawarn.app/en/.
  4. C. Troncoso et. al, “Decentralized Privacy-Preserving Proximity Tracing,” [Online]. Available: https://github.com/DP-3T/documents/ blob/master/DP3T%20White%20Paper.pdf.
  5. Apple & Google, “Exposure Notification Cryptography Specification,” [Online]. Available: https://covid19-static.cdn-apple.com/ applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf?1.
  6. D. Shumow and N. Ferguson, “On the Possibility of a Back Door in the NIST SP800-90 Dual Ec Prng,” [Online]. Available: http:// rump2007.cr.yp.to/15-shumow.pdf.
  7. V. Goyal, A. O’Neill, and V. Rao, “Correlated-input secure hash functions,” Theory of Cryptography Conference (TCC), 2011, pp. 182‒200.
  8. A.Z. Broder, “On the resemblance and containment of documents,” Proceedings. Compression and Complexity of SEQUENCES 1997, Italy, 1997, pp. 21‒29.
Go to article

Authors and Affiliations

Adam Bobowski
1
Jacek Cichoń
1
ORCID: ORCID
Mirosław Kutyłowski
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Bridge inspections are a vital part of bridge maintenance and the main information source for Bridge Management Systems is used in decision-making regarding repairs. Without a doubt, both can benefit from the implementation of the Building Information Modelling philosophy. To fully harness the BIM potential in this area, we have to develop tools that will provide inspection accurate information easily and fast. In this paper, we present an example of how such a tool can utilise tablets coupled with the latest generation RGB-D cameras for data acquisition; how these data can be processed to extract the defect surface area and create a 3D representation, and finally embed this information into the BIM model. Additionally, the study of depth sensor accuracy is presented along with surface area accuracy tests and an exemplary inspection of a bridge pillar column.
Go to article

Bibliography

  1.  J.S. Kong and D.M. Frangopol, “Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges”, J. Struct. Eng. 129(6), 818–828 (2003).
  2.  B.M. Phares, G.A. Washer, D.D. Rolander, B.A. Graybeal, and M. Moore, “Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability”, J. Bridg. Eng. 9(4), 403–413 (2004).
  3.  A. Costin, A. Adibfar, H. Hu, and S.S. Chen, “Building Information Modeling (BIM) for transportation infrastructure – Literature review, applications, challenges, and recommendations”, Autom. Constr. 94, 257–281 (2018).
  4.  “SeeBridge”. [Online]. Available: https://seebridge.net.technion.ac.il/.
  5.  R. Sacks et al., “SeeBridge as next generation bridge inspection: Overview, Information Delivery Manual and Model View Definition”, Autom. Constr. 90, 134–145 (2018).
  6.  P. Hüthwohl, I. Brilakis, A. Borrmann, and R. Sacks, “Integrating RC Bridge Defect Information into BIM Models”, J. Comput. Civ. Eng. 32(3), (2018).
  7.  P. Hüthwohl and I. Brilakis, “Detecting healthy concrete surfaces”, Adv. Eng. Informatics 37, 150–162 (2018).
  8.  P. Hüthwohl, R. Lu, and I. Brilakis, “Multi-classifier for reinforced concrete bridge defects”, Autom. Constr. 105, 102824 (2019).
  9.  R. Lu, I. Brilakis and C. R. Middleton, “Detection of Structural Components in Point Clouds of Existing RC Bridges”, Comput. Civ. Infrastruct. Eng. 34(3), 191–212 (2019).
  10.  R. Lu and I. Brilakis, “Digital twinning of existing reinforced concrete bridges from labelled point clusters”, Autom. Constr. 105, 102837 (2019).
  11.  D. Isailović, V. Stojanovic, M. Trapp, R. Richter, R. Hajdin, and J. Döllner, “Bridge damage: Detection, IFC-based semantic enrichment and visualization”, Autom. Constr. 112, 103088 (2020).
  12.  C.S. Shim, H. Kang, N.S. Dang, and D. Lee, “Development of BIM-based bridge maintenance system for cable-stayed bridges”, Smart Struct. Syst. 20(6), 697–708 (2017).
  13.  N.S. Dang and C.S. Shim, “BIM authoring for an image-based bridge maintenance system of existing cable-supported bridges”, IOP Conf. Ser. Earth Environ. Sci. 143(1), 012032 (2018).
  14.  S. Dang, H. Kang, S. Lon, and S. Changsu, “3D Digital Twin Models for Bridge Maintenance”, 10th Int. Conf. Short Mediu. Span Bridg., 2018, pp. 73.1‒73.9.
  15.  C.S. Shim, N.S. Dang, S. Lon, and C.H. Jeon, “Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model”, Struct. Infrastruct. Eng. 15(10), 1319–1332 (2019).
  16.  Z. Ma and S. Liu, “A review of 3D reconstruction techniques in civil engineering and their applications”, Adv. Eng. Informatics 37, 163–174 (2018).
  17.  Q. Wang and M.K. Kim, “Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018”, Adv. Eng. Informatics 39, 306–319 (2019).
  18.  C. Popescu, B. Täljsten, T. Blanksvärd, and L. Elfgren, “3D reconstruction of existing concrete bridges using optical methods”, Struct. Infrastruct. Eng. 15(7), 912–924 (2019).
  19.  S. Izadi et al., “KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera”, in Proceedings of the 24th annual ACM symposium on User interface software and technology – UIST ’11, 2011, p. 559.
  20.  J. Hoła, J. Bień, Ł. Sadowski, and K. Schabowicz, “Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability”, Bull. Polish Acad. Sci. Tech. Sci. 63(1), 87–96 (2015).
  21.  J. Bień, T. Kamiński, and M. Kużawa, “Taxonomy of non-destructive field tests of bridge materials and structures”, Arch. Civ. Mech. Eng. 19(4), 1353–1367 (2019).
  22.  J. Bień, M. Kużawa, and T. Kamiński, “Strategies and tools for the monitoring of concrete bridges”, Struct. Concr. 21(4), 1227–1239 (2020).
  23.  “OpenCV AI Kit”. [Online]. Available: https://www.kickstarter.com/projects/opencv/opencv-ai-kit.
  24.  B. Liu, H. Cai, Z. Ju, and H. Liu, “RGB-D sensing based human action and interaction analysis: A survey”, Pattern Recognit. 94, 1–12 (2019).
  25.  Y.-D. Hong, Y.-J. Kim, and K.-B. Lee, “Smart Pack: Online Autonomous Object-Packing System Using RGB-D Sensor Data”, Sensors 20(16), 4448 (2020).
  26.  M.R. Jahanshahi, F. Jazizadeh, S.F. Masri, and B. Becerik-Gerber, “Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor”, J. Comput. Civ. Eng. 27(6), 743–754 (2013).
  27.  D. Roca, S. Lagüela, L. Díaz-Vilariño, J. Armesto, and P. Arias, “Low-cost aerial unit for outdoor inspection of building façades”, Autom. Constr. 36, 128–135 (2013).
  28.  C. Bellés and F. Pla, “A Kinect-Based System for 3D Reconstruction of Sewer Manholes”, Comput. Civ. Infrastruct. Eng. 30(11), 906–917 (Nov. 2015).
  29.  M. Abdelbarr, Y.L. Chen, M.R. Jahanshahi, S.F. Masri, W.M. Shen, and U.A. Qidwai, “3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor”, Smart Mater. Struct. 26(12) (2017).
  30.  Z. Xu, S. Li, H. Li, and Q. Li, “Modeling and problem solving of building defects using point clouds and enhanced case-based reasoning”, Automation in Construction 96(February), 40–54 (2018).
  31.  M. Nahangi, T. Czerniawski, C.T. Haas, and S. Walbridge, “Pipe radius estimation using Kinect range cameras”, Autom. Constr. 99 (March 2017), 197–205 (2019).
  32.  G.H. Beckman, D. Polyzois, and Y.J. Cha, “Deep learning-based automatic volumetric damage quantification using depth camera”, Automation in Construction 99(November 2018), 114–124 (2019).
  33.  H. Kim, S. Lee, E. Ahn, M. Shin, and S.-H. Sim, “Crack identification method for concrete structures considering angle of view using RGB-D camera-based sensor fusion”, Struct. Heal. Monit., 1–13 (2020).
  34.  Intel, “Intel® RealSenseTM Camera D400 series Product Family Datasheet” (2019).
  35.  C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’: interactive foreground extraction using iterated graph cuts”, in ACM SIGGRAPH 2004 Papers on – SIGGRAPH ’04, 2004, p. 309.
  36.  Y. Li, J. Sun, C.K. Tang, and H.Y. Shum, “Lazy snapping”, ACM SIGGRAPH 2004 Pap. SIGGRAPH 2004, 303–308 (2004).
  37.  M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models”, Int. J. Comput. Vis. 1(4), 321–331 (Jan. 1988).
  38.  M.A. Fischler and R.C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Commun. ACM 24(6), 381–395 (1981).
  39.  D. Holz and S. Behnke, “Fast Range Image Segmentation and Smoothing Using Approximate Surface Reconstruction and Region Growing”, 2013, 61–73.
  40.  M. Garland and P.S. Heckbert, “Surface simplification using quadric error metrics”, in Proceedings of the 24th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’97, 1997, 209–216.
  41.  Intel, “Intel® RealSenseTM Camera: Depth testing methodology”, 2018.
  42.  B. Wójcik and M. Żarski, “Asesment of state-of-the-art methods for bridge inspection: case study”, Arch. Civ. Eng. 66(4), 343‒362 (2020).
  43.  K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN”, IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2017).
Go to article

Authors and Affiliations

Bartosz Wójcik
1
ORCID: ORCID
Mateusz Żarski
1
ORCID: ORCID

  1. Department of Mechanics and Bridges, Faculty of Civil Engendering, Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents and sums up the research and technical aspects of the modernization of the cutting tool of the dredger. Improper adjustment of the cutting elements not adjusted to the characteristics of excavated material is not an uncommon situation, causing versatile geological conditions. Relocation of the machines from one pit to another may result in the significant influence on the excavation process (wear, output, etc.). Common practice is the field try and error approach to obtain desired machine performance. In the paper authors present the approach with aid of cutting-edge technologies. Coupled DEM and kinematic simulations supported by the reverse engineering technologies of laser scanning were the fundamental drivers for final adjustments of the cutting tool at its present operational conditions.
Go to article

Bibliography

  1.  M. Saga et al., “Experimental Determination of the Manson-Coffin Curves for an Original Unconventional Vehicle Frame”, Materials 13, 4675 (2020), doi: 10.3390/ma13204675.
  2.  J. Dizo et al.,”Development of a New System for Attaching the Wheels of the Front Axle in the Cross-Country Vehicle”, Symmetry-Basel 12, 1156, (2020), doi: 10.3390/sym12071156.
  3.  S. Bosnajk and N. Zrnic, “Dynamics, failures, redesigning and environmentally friendly technologies in surface mining systems”, Arch. Civ. Mech. Eng. 12, 348–359 (2012).
  4.  D. Danicic, S. Sedmak, D. Ignjatovic, and S. Mitrovic, “Bucket wheel excavator damage by fatigue fracture – case study”, Procedia Mater. Sci. 3, 1723‒1728, 2014.
  5.  J. Peng, X. Liquan, L. Zheng, X. Liang, and Y Li, “Analysis on Layered Rock Cutting Process With Cutter Suction Dredger Based On Discrete Element Method”, in E-proceedings of the 38 th IAHR World Congress 09, 2019, doi: 10.3850/38WC092019-0333.
  6.  A. Amiadji, A. Baidowi, and R. Prayogo, “Development of Cutter Head Design in Cutter Suction Dredger with Thickness and Pitch Variation”, Int. J. Mar. Eng. Inn. Res. 3(3), 93‒108 (2019).
  7.  K. Pieczonka, Inżynieria maszyn roboczych. Cz. 1, Podstawy urabiania, jazdy, podnoszenia i obrotu, Wroclaw University of Science and Technology Publishing House, 2009, [in Polish].
  8.  R.N. Bray, A.D. Bates, and J.M. Land, Dredging: A Handbook for Engineers, Butterworth-Heinemann, 1996.
  9.  M. Macko, Z. Szczepański, D. Mikołajewski, E. Mikołajewska, and S. Listopadzki, “The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine”, in Proceedings of the 13th International Scientific Conference. RESRB 2016. Lecture Notes in Mechanical Engineering. Springer, Cham, 2016, doi: 10.1007/978-3-319-50938-9_36.
  10.  J. Andruszko, P. Moczko, and D. Pietrusiak, “The use of numerical methods in cutterhead dredger excavation unit optimization”, in Proc. XXIII International Conference on Material Handling, Construction and Logistics, MHCL 2019, 2019, pp. 141‒146.
  11.  I. Rojek, “Modelowanie i symulacja komputerowa złożonych zagadnień mechaniki nieliniowej metodami elementów skończonych i dyskretnych”, Prace Instytutu Podstawowych Problemów Techniki PAN, pp. 119‒146, 2007 [in Polish].
  12.  A. Danesh, A.A. Mirghaseim, and M. Palassi, “Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM)”, Transport. Geotech. 23, 100357 (2020).
  13.  P. Siemaszko and Z. Meyer, “Static load test curve analysis based on soil field investigations”, Bull. Pol. Acad. Sci. Tech. Sci., 67(2), 329‒337 2019 doi: 10.24425/bpas.2019.128607.
  14.  K. Pieczonka, Maszyny górnicze: Maszyny urabiające i ładujące do podziemnej eksploatacji złóż rud, Wroclaw University of Technology Publishing House, 1981, [in Polish].
  15.  H. Gilvari, W. de Jong, and D.L. Schott, “Breakage behavior of biomass pellets: an experimental and numerical study”, Comp. Part. Mech. 2020, doi: 10.1007/s40571-020-00352-3.
  16.  H. Hertz, “On the contact of rigid elastic solids and on hardness”, Ch 6: Assorted Papers, 1882.
  17.  R.D. Mindlin, “Compliance of Elastic Bodies in Contact”, J. Appl. Mech. 16(3), 259‒268 (1949).
  18.  Y. Tsuji, T. Tanaka, and T. Ishida, “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe”, Powder Technol. 71, 239‒250 (1992).
  19.  P.A. Cundall and O.D.L. Strack, “A discrete numerical model for granular assemblies”, Géotechnique 29, 47‒65 (1979).
  20.  T. Rashi, K. Jeremy, and D. George, “Bucket trajectory classification of mining excavators”, Autom. Constr, 31, 128‒139 (2013).
  21.  S. Blouin, A. Hemami, and M. Lipsett, “Review of resistive force models for earthmoving processes”, J. Aerosp. Eng. 14(3), 102‒111 (2001).
  22.  S.M. Bosnjak, D.C.D. Oguamanam, and N.D. Zrnic, “The influence of constructive parameters on response of bucket wheel excavator superstructure”, Arch. Civ. Mech. Eng. 15(4), 977‒985, 2015.
  23.  E. Rusiński et. al., “Investigations And Modernizations Of Buckets Of Surface Mining Machines”, Eng. Struct. 90, 29‒37 (2015).
  24.  D. Pietrusiak, P. Moczko, and E. Rusiński, “Recent achievements in investigations of dynamics of surface mining heavy machines”, in Proc. 24th World Mining Congress: mining in a world of innovation – proceedings, 2016, pp. 295‒308.
  25.  J. Czmochowski, P. Moczko, D. Pietrusiak, G. Przybyłek, and E. Rusiński, “Selected Aspects of Technical Condition State Assessment of Spreaders Operating in Lignite Mines”, in Proc. Proceedings of the 13th International Scientific Conference Computer Aided Engineering, 2016, pp. 89‒98.
  26.  E. Rusiński and J. Czmochowski, T. Smolnicki, Zaawansowana metoda elementów skończonych w konstrukcjach nośnych, Wroclaw University of Science and Technology Publishing House, 2000, [in Polish].
Go to article

Authors and Affiliations

Jakub Andruszko
1
Przemyslaw Moczko
1
Damian Pietrusiak
1

  1. Department of Machine Design and Research, Wroclaw University of Science and Technology, ul. Ignacego Lukasiewicza 7/9, 50-371 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In times of the COVID-19, reliable tools to simulate the airborne pathogens causing the infection are extremely important to enable the testing of various preventive methods. Advection-diffusion simulations can model the propagation of pathogens in the air. We can represent the concentration of pathogens in the air by “contamination” propagating from the source, by the mechanisms of advection (representing air movement) and diffusion (representing the spontaneous propagation of pathogen particles in the air). The three-dimensional time-dependent advection-diffusion equation is difficult to simulate due to the high computational cost and instabilities of the numerical methods. In this paper, we present alternating directions implicit isogeometric analysis simulations of the three-dimensional advection-diffusion equations. We introduce three intermediate time steps, where in the differential operator, we separate the derivatives concerning particular spatial directions. We provide a mathematical analysis of the numerical stability of the method. We show well-posedness of each time step formulation, under the assumption of a particular time step size. We utilize the tensor products of one-dimensional B-spline basis functions over the three-dimensional cube shape domain for the spatial discretization. The alternating direction solver is implemented in C++ and parallelized using the GALOIS framework for multi-core processors. We run the simulations within 120 minutes on a laptop equipped with i7 6700 Q processor 2.6 GHz (8 cores with HT) and 16 GB of RAM.
Go to article

Bibliography

  1.  “Coronavirus disease (COVID-19): How is it transmitted?”. [Online] Available: https://www.who.int/emergencies/diseases/novel- coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-how-is-covid-19-transmitted.
  2.  D.W. Peaceman and H.H. Rachford Jr., “The numerical solution of parabolic and elliptic differential equations’’, J. Soc. Ind. Appl. Math., vol. 3, no. 1, pp. 28‒41, 1955.
  3.  J. Douglasand and H. Rachford, “On the numerical solution of heat conduction problems in two and three space variables’’, Trans. Am. Math. Soc., vol. 82, no. 2, pp. 421‒439, 1956.
  4.  E.L. Wachspress and G. Habetler, “An alternating-direction-implicit iteration technique’’, J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 403‒423, 1960.
  5.  G. Birkhoff, R.S. Varga, and D. Young, “Alternating direction implicit methods’’, Adv. Comput., vol. 3, pp. 189‒273, 1962.
  6.  J.L. Guermond and P. Minev, “A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting’’, C.R. Math., vol. 348, pp. 581‒585, 2010.
  7.  J.L. Guermond, P. Minev, and J. Shen, “An overview of projection methods for incompressible flows’’, Comput. Methods Appl. Mech. Eng., vol. 195, pp. 6011‒6054, 2006.
  8.  J.A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Unification of CAD and FEA, John Wiley and Sons, 2009.
  9.  M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis’’, Comput. Fluids, vol. 49, pp. 93‒100, 2011.
  10.  K. Chang, T.J.R. Hughes, and V.M. Calo, “Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall’’, Comput. Fluids, vol. 68, pp. 94‒104, 2012.
  11.  L. Dedè, T.J.R. Hughes, S. Lipton, and V.M. Calo, “Structural topology optimization with isogeometric analysis in a phase field approach’’, USNCTAM2010, 16th US National Congree of Theoretical and Applied Mechanics, 2010.
  12.  L. Dedè, M.J. Borden, and T.J.R. Hughes, “Isogeometric analysis for topology optimization with a phase field model’’, Arch. Comput. Methods Eng., vol. 19, pp. 427‒465, 2012.
  13.  H. Gómez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes, “Isogeometric analysis of the {Cahn-Hilliard} phase-field model’’, Comput. Methods Appl. Mech. Eng., vol. 197, pp. 4333‒4352, 2008.
  14.  H. Gómez, T.J.R. Hughes, X. Nogueira, and V.M. Calo, “Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations’’, Comput. Methods Appl. Mech. Eng., vol. 199, pp. 1828‒1840, 2010.
  15.  R. Duddu, L. Lavier, T.J.R. Hughes, and V.M. Calo, “A finite strain Eulerian formulation for compressible and nearly incompressible hyper-elasticity using high-order NURBS elements’’, Int. J. Numer. Methods Eng., vol. 89, pp. 762‒785, 2012.
  16.  S. Hossain, S.F.A. Hossainy, Y. Bazilevs, V.M. Calo, and T.J.R. Hughes, “Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls’’, Comput. Mech., vol. 49, pp. 213‒242, 2012.
  17.  Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid-structure interaction analysis with applications to arterial blood flow’’, Comput. Mech., vol. 38, pp. 310‒322, 2006.
  18.  Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows’’, Comput. Methods Appl. Mech. Eng., vol. 197, pp. 173‒201, 2007.
  19.  V.M. Calo, N. Brasher, Y. Bazilevs, and T.J.R. Hughes, “Multiphysics Model for Blood Flow and Drug Transport with Application to Patient-Specific Coronary Artery Flow’’, Comput. Mech., vol. 43, pp. 161‒177, 2008.
  20.  M. Łoś, M. Paszyński, A. Kłusek, and W. Dzwinel, “Application of fast isogeometric L2 projection solver for tumor growth simulations’’, Comput. Methods Appl. Mech. Eng., vol. 316, pp. 1257‒1269, 2017.
  21.  M. Łoś, A. Kłusek, M. Amber Hassam, K. Pingali, W. Dzwinel, and M. Paszyński, “Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor growth simulations’’, Comput. Methods Appl. Mech. Eng., vol. 343, pp. 1‒22, 2019.
  22.  A. Paszyńska, K. Jopek. M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C0 separators for efficient isogeometric analysis simulations with direct solvers’’, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907‒917, 2018.
  23.  L. Gao and V.M. Calo, “Fast Isogeometric Solvers for Explicit Dynamics’’, Comput. Methods Appl. Mech. Eng., vol. 274, pp. 19‒41, 2014.
  24.  L. Gao and V.M. Calo, “Preconditioners based on the alternating-direction-implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients’’, J. Comput. Appl. Math., vol. 273, pp. 274‒295, 2015.
  25.  L. Gao, “Kronecker Products on Preconditioning’’, PhD. Thesis, King Abdullah University of Science and Technology, 2013.
  26.  M. Łoś, M. Woźniak, M. Paszyński, L. Dalcin, and V.M. Calo, “Dynamics with Matrices Possessing Kronecker Product Structure’’, Procedia Comput. Sci., vol. 51, pp. 286‒295, 2015.
  27.  M. Woźniak, M. Łoś, M. Paszyński, L. Dalcin, and V. Calo, “Parallel fast isogeometric solvers for explicit dynamics’’, Comput. Inform., vol. 36, no. 2, pp. 423‒448, 2017.
  28.  M. Łoś, M. Woźniak, M. Paszyński, A. Lenharth, and K. Pingali, “IGA-ADS : Isogeometric Analysis FEM using ADS solver’’, Comput. Phys. Commun., vol. 217, pp. 99‒116, 2017.
  29.  G. Gurgul, M. Woźniak, M. Łoś, D. Szeliga, and M. Paszyński, “Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L2 projections solver for material science simulations’’ Comput. Methods Mater. Sci., vol. 17, no.1, pp. 1‒11, 2017.
  30.  M. Łoś, J. Munoz-Matute, K. Podsiadło, M. Paszyński, and K. Pingali, “Parallel shared-memory isogeometric residual minimization (iGRM) for three-dimensional advection-diffusion problems’’, Lect. Notes Comput. Sci., vol. 12143, pp. 133‒148, 2020.
  31.  A. Alonso, R. Loredana Trotta, and A. Valli, “Coercive domain decomposition algorithms for advection-diffusion equations and systems’’, J. Comput. Appl. Math., vol. 96, no. 1, pp. 51‒76, 1998.
  32.  K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M.A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos, and X. Sui, “The tao of parallelism in algorithms’’, SIGPLAN, vol. 46, 2011, doi: 10.1145/1993316. 1993501.
  33.  A. Takhirov, R. Frolov, and P. Minev, “Direction splitting scheme for Navier-Stokes-Boussinesq system in spherical shell geometries’’, arXiv:1905.02300, 2019.
Go to article

Authors and Affiliations

Marcin Łoś
1
ORCID: ORCID
Maciej Woźniak
1
ORCID: ORCID
Ignacio Muga
2
ORCID: ORCID
Maciej Paszynski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Download PDF Download RIS Download Bibtex

Abstract

The optimum combination of blade angle of the runner and guide vane opening with Kaplan turbine can improve the hydroelectric generating the set operation efficiency and the suppression capability of oscillations. Due to time and cost limitations and the complex operation mechanism of the Kaplan turbine, the coordination test data is insufficient, making it challenging to obtain the whole curves at each head under the optimum coordination operation by field tests. The field test data is employed to propose a least-squares support vector machine (LSSVM)-based prediction model for Kaplan turbine coordination tests. Considering the small sample characteristics of the test data of Kaplan turbine coordination, the LSSVM parameters are optimized by an improved grey wolf optimization (IGWO) algorithm with mixed non-linear factors and static weights. The grey wolf optimization (GWO) algorithm has some deficiencies, such as the linear convergence factor, which inaccurately simulates the actual situation, and updating the position indeterminately reflects the absolute leadership of the leader wolf. The IGWO algorithm is employed to overcome the aforementioned problems. The prediction model is simulated to verify the effectiveness of the proposed IGWO-LSSVM. The results show high accuracy with small samples, a 2.59% relative error in coordination tests, and less than 1.85% relative error in non-coordination tests under different heads.
Go to article

Bibliography

  1.  H.A. Menarin, H.A. Costa, G.L.M. Fredo, R.P. Gosmann, E.C. Finardi, and L.A. Weiss, “Dynamic Modeling of Kaplan Turbines Including Flow Rate and Efficiency Static Characteristics”, IEEE Trans. Power Syst. 34(4), 3026‒3034 (2019).
  2.  M.M. Shamsuddeen, J. Park, Y. Choi, and J. Kim, “Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner”, Renew. Energy 162, 861‒876 (2020).
  3.  P. Pennacchi, P. Borghesani, and S. Chatterton, “A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines”, Mech. Syst. Signal Process. 60‒61, 375‒390 (2015).
  4.  A. Javadi and H. Nilsson, “Detailed numerical investigation of a Kaplan turbine with rotor-stator interaction using turbulence-resolving simulations”, Int. J. Heat Fluid Flow 63, 1‒13 (2017).
  5.  D. Kranjcic and G. Štumberger, “Differential Evolution-Based Identification of the Nonlinear Kaplan Turbine Model”, IEEE Trans. Energy Convert. 29(1), 178‒187 (2014).
  6.  Z. Krzemianowski, “Engineering design of low-head Kaplan hydraulic turbine blades using the inverse problem method”, Bull. Pol. Acad. Sci. tech. Sci. 67(6), 1133–1147 (2019).
  7.  A.B. Janjua, M.S. Khalil, M. Saeed, F.S. Butt, and A.W. Badar, “Static and dynamic computational analysis of Kaplan turbine runner by varying blade profile”, Energy Sustain. Dev. 58, 90‒99 (2020).
  8.  Y. Wu, S. Liu, H. Dou, S. Wu, and T. Chen, “Numerical prediction and similarity study of pressure fluctuation in a prototype Kaplan turbine and the model turbine”, Comput. Fluids 56, 128‒142 (2012).
  9. S.J. Daniels, A.A.M. Rahat, G.R. Tabor, J.E. Fieldsend, and R.M. Everson, “Shape optimisation of the sharp-heeled Kaplan draft tube: Performance evaluation using Computational Fluid Dynamics”, Renew. Energy. 160, 112‒126 (2020).
  10.  F. Thiery, R. Gustavsson, and J.O. Aidanpää, “Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts”, Int. J. Mech. Sci. 99, 251‒261 (2015).
  11.  H. Quan, D. Srinivasan, and A. Khosravi, “Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals”, IEEE Trans. Neural Netw. Learn. Syst. 25(2), 303‒315 (2014).
  12.  V. Marano, G. Rizzo, and F.A. Tiano, “Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage”, Appl. Energy. 97, 849‒859 (2012).
  13.  N. Yang and H.Chen, “Decomposed Newton algorithm-based three-phase power-flow for unbalanced radial distribution networks with distributed energy resources and electric vehicle demands”, Int. J. Electr. Power Energy Syst. 96, 473‒483 (2018).
  14.  J. Park and K.H. Law, “Layout optimization for maximizing wind farm power production using sequential convex programming”, Appl. Energy. 151, 320‒334 (2015).
  15.  T. Ding, R. Bo, F. Li, Y. Gu, Q. Guo, and H. Sun, “Exact Penalty Function Based Constraint Relaxation Method for Optimal Power Flow Considering Wind Generation Uncertainty”, IEEE Trans. Power Syst. 30(3), 1546‒1547 (2015).
  16.  H. Kebriaei, B.N. Araabi, and A. Rahimi-Kian, “Short-Term Load Forecasting With a New Nonsymmetric Penalty Function”, IEEE IEEE Trans. Power Syst. 26 (4), 1817‒1825 (2011).
  17.  A.T. Eseye, J. Zhang, and D. Zheng, “ Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information”, Renew. Energy. 118, 357‒367 (2018).
  18.  Y. Li and X. Wnag, “Improved dolphin swarm optimization algorithm based on information entropy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 679–685 (2019).
  19.  H. Koyuncu and R. Ceylan, “A PSO based approach: Scout particle swarm algorithm for continuous global optimization problems”, J. Comput. Des. Eng. 6, 129‒142 (2019).
  20.  H. Liu, H.P. Wu, Y.F. Li, “Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction”, Energy Conv. Manag. 161, 266‒283 (2018).
  21.  M. Gratza, R. Witzmann, Ch.J. Steinhart, M. Finkel, M. Becker, T. Nagel, T. Wopperer, and H. Wackerl, “Frequency Stability in Island Networks: Development of Kaplan Turbine Model and Control of Dynamics”, in 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 2018, pp. 1‒7, doi: 10.23919/PSCC.2018.8442445.
  22.  M. Malvoni, M.G. D. Giorgi, and P.M. Congedo, “Photovoltaic forecast based on hybrid PCA–LSSVM using dimensionality reducted data”, Neurocomputing 211, 72‒83 (2016).
  23.  Y. Sun, Y. Liu, and H. Liu, “Temperature Compensation for a Six-Axis Force/Torque Sensor Based on the Particle Swarm Optimization Least Square Support Vector Machine for Space Manipulator”, IEEE Sensors Journal. 16(3), 798‒805 (2016).
  24.  X. Yan and N.A. Chowdhury, “Mid-term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach”, Int. J. Electr. Power Energy Syst. 53, 20‒26 (2013)
  25.  S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer”, Adv. Eng. Softw. 69, 46‒61 (2014).
  26.  I.B.M. Taha and E.E. Elattar, “Optimal reactive power resources sizing for power system operations enhancement based on improved grey wolf optimiser”, IET Gener. Transm. Distrib. 12(14), 3421‒3434 (2018).
  27.  W. Long, J.J. Jiao, X.M. Liang, and M.Z. Tang, “Inspired grey wolf optimizer for solving large-scale function optimization problems”, Appl. Math. Model. 60, 112‒126 (2018).
  28.  Y. Li, B. Zhang, and X. Xu, “Decoupling control for permanent magnet in-wheel motor using internal model control based on back- propagation neural network inverse system”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 961–972 (2018).
  29.  D. Huang, S. He, X. He, and X. Zhu, “Prediction of wind loads on high-rise building using a BP neural network combined with POD”, J. Wind Eng. Ind. Aerodyn. 170, 1‒17 (2017).
  30.  A.L. Yang, W.D. Li, and X. Yang, “Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines”, Knowledge-Based Syst. 163, 159‒173 (2019).
  31.  N.A. Menad, Z. Noureddine, A. Hemmati-Sarapardeh, and S. Shamshirband, “Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: Application to thermal enhanced oil recovery processes”, Fuel 242, 649‒663 (2019).
Go to article

Authors and Affiliations

Fannie Kong
1
ORCID: ORCID
Jiahui Xia
1
ORCID: ORCID
Daliang Yang
1
ORCID: ORCID
Ming Luo
1
ORCID: ORCID

  1. School of Electrical Engineering, Guangxi University, Nanning, 530000, China
Download PDF Download RIS Download Bibtex

Abstract

In the ceramic industry, quality control is performed using visual inspection in three different product stages: green, biscuit, and the final ceramic tile. To develop a real-time computer visual inspection system, the necessary step is successful tile segmentation from its background. In this paper, a new statistical multi-line signal change detection (MLSCD) segmentation method based on signal change detection (SCD) method is presented. Through experimental results on seven different ceramic tile image sets, MLSCD performance is analyzed and compared with the SCD method. Finally, recommended parameters are proposed for optimal performance of the MLSCD method.
Go to article

Bibliography

  1.  G.M.A. Rahaman and M. Hossain, “Automatic Defect Detection and Classification Technique from Image: A Special Case Using Ceramic”, Int. J. Comput. Sci Inf. Secur. 1(1), 9 (2009).
  2.  M. Villalon-Hernandez, D. Almanza-Ojeda, and M. Ibarra- Manzano, “Color-Texture Image Analysis for Automatic Failure Detection in Tiles”, in Pattern Recognition, MCPR 2017. Lecture Notes in Computer Science, vol. 10267, pp. 159–168, eds. J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, and J.A. Olvera-López, Springer International Publishing, Cham, 2017.
  3.  M.H. Karimi and D. Asemani, “Surface defect detection in tiling industries using digital image processing methods: Analysis and evaluation”, ISA Trans. 53(3), 834‒844 (2014).
  4.  F.S. Najafabadi and H. Pourghassem, “Corner defect detection based on dot product in ceramic tile images”, In 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, Penang, Malaysia, 2011, pp. 293–297.
  5.  R. Mishra, C.L. Chandrakar, and R. Mishra, “Surface Defects Detection for Cermaic Tiles Using Image Processing and Morphological Techniques”, Appl. Sci. 2(2), 17 (2012).
  6.  T. Czimmermann et al., “Visual-Based Defect Detection and Classification Approaches for Industrial Applications – A SURVEY”, Sensors 20(5), 1459, (2020).
  7.  V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 799–810 (2018).
  8.  N. Wang, X. Zhao, Z. Zou, P. Zhao, and F. Qi, “Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning”, Comput.-Aided Civil Infrastruct. Eng. 35(3), 277–291 (2020).
  9.  X. Gu and Y. Sun, “Image analysis of ceramic burning based on cellular automata”, EURASIP J. Image Video Process. 2018(1), 110 (2018).
  10.  T. Matić, I. Vidović, and Ž. Hocenski, “Real Time Contour Based Ceramic Tile Edge and Corner Defects Detection”, Teh. Vjesn.-Technical Gazette 20(6), 8 (2013).
  11.  Ž. Hocenski, T. Keser, and A. Baumgartner, “A Simple and Efficient Method for Ceramic Tile Surface Defects Detection”, In 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007, pp. 1606–1611.
  12.  T. Matić, I. Aleksi, and Ž. Hocenski, “CPU, GPU and FPGA Implementations of MALD: Ceramic Tile Surface Defects Detection Algorithm”, Automatika 55(1), 9–21 (2014).
  13.  J. Zhuang, L. Yang, and J. Li, “An Improved Segmentation Algorithm Based on Superpixel for Typical Industrial Applications”, In 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2018, pp. 366–370.
  14.  X. Zhou, Y. Wang, Q. Zhu, J. Mao, C. Xiao, X. Lu, and H. Zhang, “A Surface Defect Detection Framework for Glass Bottle Bottom Using Visual Attention Model and Wavelet Transform”, IEEE Trans. Ind. Inform. 16(4), 2189–2201 (2020).
  15.  X. Yan, L. Wen, and L. Gao, “A Fast and Effective Image Preprocessing Method for Hot Round Steel Surface”, Math. Probl. Eng., 2019, 1–14 (2019).
  16.  R. Cunha et al., Applying Non-destructive Testing and Machine Learning to Ceramic Tile Quality Control”, In 2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC), Salvador, Brazil, 2018, pp. 54–61.
  17.  T. Matić, I. Aleksi, Ž. Hocenski, and D. Kraus, “Real-time biscuit tile image segmentation method based on edge detection”, ISA Transactions 76, 246–254 (2018).
  18.  S.M. Kay, Fundamentals of Statistical Signal Processing: Practical Algorithm Development, Prentice-Hall PTR, 2013.
  19.  L.G. Shapiro and R.M. Haralick, Computer and Robot Vision, Addison-Wesley Publishing Company, 1992.
  20.  Z. Hocenski and T. Keser, “Failure detection and isolation in ceramic tile edges based on contour descriptor analysis”, In 2007 Mediterranean Conference on Control & Automation, Athens, Greece, 2007, pp. 1–6.
  21.  R.C. Gonzalez and R.E.Woods, Digital Image Processing, Pearson, 2018.
  22.  Ž. Hocenski, T. Matić, and I. Vidović, “Technology transfer of computer vision defect detection to ceramic tiles industry”, In 2016 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 2016, pp. 301–305.
  23.  M. Montorsi, C. Mugoni, A. Passalacqua, A. Annovi, F. Marani, L. Fossa, R. Capitani, and T. Manfredini, “Improvement of color quality and reduction of defects in the ink jet-printing technology for ceramic tiles production: A design of experiments study”, Ceram. Int. 42(1, Part B), 1459–1469 (2016).
  24.  The GIMP Development Team. GIMP, 2019.
  25.  A.Z. Arifin and A. Asano, “Image Segmentation by Histogram Thresholding Using Hierarchical Cluster Analysis”, Pattern Recognit. Lett., 27(13), 1515–1521 (2006).
Go to article

Authors and Affiliations

Filip Sušac
1
Tomislav Matić
1
Ivan Aleksi
1
Tomislav Keser
1

  1. J. J. Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia

This page uses 'cookies'. Learn more