Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 32
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The authors of the paper describe the way in which the longitudinal working Gussmann was mined in level V and the longitudinal working Kosocice in level VI, which in both cases resulted in a water flux from behind the northern boundary of the salt deposit. Only after concrete dams were seated on both levels, the brine flux was stopped leaving a direct contact of the dams with the pressurized water around the mine. For the sake of controlling water beyond the dams, steel pipelines were conducted through both dams and equipped with gauges before the dams. Their use in a saline environment, the developing corrosion increased the possibility that the tightness of the pipelines would be damaged. For this reason a decision was made to protect the mine by making a tight reconstruction of the safety pillar in both levels along the longitudinal working for about 600 m from the dams eastwards. For this purpose the pipeline injection method was applied. As the volume of voids to be tightly filled equaled to about 3800 m3, the task had to be divided into stages. Because of considerable distances of the liquidated workings from the closest shaft, the sealing slurries were prepared in a special injection center on the surface from where they were transported to the destination with a pumping pipeline through the Kościuszko shaft. The most important aspect of liquidating the end parts of the longitudinal working was to properly select the sealing slurries in view of their best cooperation with the rock mass, and such parameters as tightness, durability and cost. At the end stage of works, both longitudinal workings were equipped with dams, which were sealed up with the hole injection method. The innovative technology was implemented in the Wieliczka Salt Mine to reconstruct the safety pillar in levels VI and V in the most westward workings, the mine was shortened by about 600 m, the length of the ventilation system was reduced, systematic observations and pressure read-outs in dams 3 and 4 were systematically eliminated in dams 3 and 4. In this way the costs were lowered and safety of the mine improved.
Go to article

Bibliography

1] M. Cała, A. Stopkowicz, M. Kowalski, M. Blajer, K. Cyran, K. d’Obyrn, Stability analysis of underground mining openings with complex geometry. Studia Geotechnica et Mechanica 38, 1, 25-32 (2016).
[2] K . d’Obyrn, K. Brudnik, Results of hydrogeological monitoring in ‘Wieliczka’ Salt Mine after closing water inflow in transverse working Mina, level IV (Wyniki monitoringu hydrogeologicznego w Kopalni Soli „Wieliczka” po zamknięciu dopływu wody w poprzeczni Mina na poz. IV). Mining Review (Przegląd Górniczy) 6, 90-96 (2011).
[3[ K . d’Obyrn, Possible way of protecting Jakubowice chambers in ‘Wieliczka’ Salt Mine (Możliwości zabezpieczenia komór Jakubowice w Kopalni Soli „Wieliczka”). Mining and Geoengineering (Górnictwo i Geoinżynieria), Yearly 35, 2, 171-182 (2011).
[4] D . Flisiak, K. Cyran, Geomechanical parameters of miocene rock salt (Właściwości geomechaniczne mioceńskich soli kamiennych). Geological Bulletin of the Polish Geological Institute (Biuletyn Państwowego Instytutu Geologicznego) 429, 43-49 (2008).
[5] A . Garlicki, A. Gonet, S. Stryczek, Reinforcement of saline rock mass on the example of the salt mine Wieliczka. Proc. of the 2001 ISRM Intern. Symposium Frontiers of Rock Mechanics and Sustainable Development in the 21st Centry Beijing, China., A.A. Balkema Publishers, 581-583 (2001).
[6] A . Garlicki, Z. Wilk, Geological and hydrogeological background of water breakdown at level IV in ‘Wieliczka’ Salt Mine (Geologiczne i hydrogeologiczne tło awarii wodnej na poziomie IV kopalni soli Wieliczka). Geological Review (Przegląd Geologiczny) 41, 3, 183-192 (1993).
[7] A . Gonet, S. Stryczek et al., Patent PL 170267 of 29.11.1996. Method of filling empty voids in the rock mass (Sposób wypełniania pustych przestrzeni górotworu).
[8] A . Gonet, S. Stryczek, A. Garlicki, W. Brylicki, Protection of Salt Mines against Water Inflow Threat on the Example of Wieliczka Salt Mine. 8th World Symposium Hague, Elsevier 1, 363-368 (2000).
[9] S. Stryczek et al., Patent PL 171213 of 28.03.1997. Mixture for filling and sealing empty spaces in the rock mass (Mieszanina do wypełniania i uszczelniania pustych przestrzeni górotworu).
[10] S. Stryczek, A. Gonet, Selection of slurries for reinforcing saline rock mass (Dobór zaczynów do wzmacniania górotworu solnego). Conference proceedings ‘Restoring usability value to mining areas. Old mines – new perspectives’ (Materiały konferencyjne pt. Przywracanie wartości użytkowych terenom górniczym. Stare kopalnie – nowe perspektywy), PAN -IGSMiE, Kraków, 327-335 (2001).
Go to article

Authors and Affiliations

Andrzej Gonet
1
ORCID: ORCID
Stanisław Antoni Stryczek
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper provides an analysis of the evacuation process in a road tunnel in the event of a fire, using the example of the tunnel under the Luboń Mały mountain currently being constructed on Expressway S7’s Lubień – Rabka-Zdrój section. As fires are the largest and most dangerous events occurring in road tunnels, it is important to predict the evacuation process as early as at the design stage. The study described here used numerical modelling to simulate evacuation, which made it possible to determine the required safe evacuation time of all tunnel users in a fire. On the basis of the parameters of the tunnel under Luboń Mały, numerical studies were performed for four different fire scenarios, three of which assumed various fire locations with the currently designed two traffic lanes. The fourth variant accounted for the planned extension of the roadway to include three traffic lanes. Eventually, four numerical models were developed involving various fire ignition locations and numbers of potential tunnel users. The values of initial-boundary conditions used in the simulation, such as movement speed during evacuation, shoulder breadth and pre-movement time, were specified on the basis of experimental data for an evacuation performed in smoke conditions in the Emilia tunnel in Laliki. The results lead to the conclusion that if the time of reaching critical conditions in the tunnel is not shorter than 5 minutes 40 seconds for the current design state and 5 minutes 47 seconds for three lanes, the distribution of evacuation exits in the tunnel under Luboń Mały will ensure safe evacuation.
Go to article

Bibliography

[1] C . Caliendo, M.L. De Guglielmo, Accident rates in road tunnel and social costs evaluation. SIIV – 5th International Congress – Sustainability of Road tunnels Infrastructures. In Procedia – Social and Behavioural Sciences 53, 166- 177 (2012).
[2] A . Voeltzel, A. Dix, A comparative analysis of the Mont Blanc, Tauern and Gotthard tunnel fires. World Road Association (PIARC ) 324, 18-34 (2004).
[3] I . Maevski, Design Fires in Road Tunnels, A synthesis of Highway Practice. New York: Transportation Research Board NCHR P National Cooperative Highway Research Program Synthesis 415. (2011).
[4] British Standard. The application of fire safety engineering principles to fire safety design of buildings. Human factors. Life safety strategies. Occupant evacuation, behaviour and condition, BSI. PD 7974-6:2004.
[5] E . Ronchi, P. Colonna, J. Capote, D. Alvear, N. Berloco, A. Cuesta, The evaluation of different evacuation models for assessing road tunnel safety analyses. Tunnelling and Underground Space Technology 30, 74-84 (2012). doi: 10.1016/j.tust.2012.02.008
[6] E . Ronchi, M. Kinsey, Evacuation models of the future: insights from an online survey of user’s experiences and needs. Advanced Research Workshop – Evacuation and Human Behaviour in Emergency Situations 145-155 (2011).
[7] N. Schmidt-Polończyk. Ocena możliwości stosowania wentylacji wzdłużnej w długich tunelach drogowych. Assessment of the possibility to apply longitudinal ventilation in long road tunnels. PhD thesis, AGH UST (2016).
[8] Road Tunnels: Operational Strategies for Emergency Ventilation. France: PIARC Committee on Road Tunnels (2011).
[9] M . Kinateder, P. Pauli, M. Müller, J. Krieger, F. Heimbecher, I. Rönnau, Human behaviour in severe tunnel accidents: Effects of information and behavioural training. Transportation Research Part F: Traffic Psychology and Behaviour 17, 20-32 (2013). doi: 10.1016/j.trf.2012.09.001
[10] E . Ronchi, K. Fridolf, H. Frantzich, D. Nilsson, A.L. Walter, H. Modig, A tunnel evacuation experiment on movement speed and exit choice in smoke. Fire Safety Journal 97, 126-136 (2018). doi: 10.1016/j.firesaf.2017.06.002
[11] M . Seike, N. Kawabata, M. Hasegawa, Evacuation speed in full-scale darkened tunnel filled with smoke. Fire Safety Journal 91, 901-907, (2017). doi: 10.1016/j.firesaf.2017.04.034
[12] C. Casse, S. Caroly, Analysis of critical incidents in tunnels to improve learning from experience. Safety Science 116, 222-230 (2019), DOI : 10.17632/scrdwnzc7t.1
[13] K . Fridolf, E. Ronchi, D. Nilsson, H. Frantzich, The representation of evacuation movement in smoke-filled underground transportation systems. Tunnelling and Underground Space Technology 90, 28-41 (2019), doi: 10.1016/j. tust.2019.04.016
[14] J. Porzycki, N. Schmidt-Polończyk, J. Wąs, Pedestrian behavior during evacuation from road tunnel in smoke condition – Empirical results. PLOS ONE 13 (8), e0201732 (2019). doi: 10.1371/journal.pone.0201732
[15] I. Donald, D. Canter, Intentionality and fatality during the King’s Cross underground fire. European Journal of Social Psychology 22 (3), 203-218 (1992).
[16] K . Fridolf, D. Nilsson, H. Frantzich, Fire Evacuation in Underground Transportation Systems: A Review of Accidents and Empirical Research. Fire Technology 49 (2), 451-475 (2013). doi: 10.1007/s10694-011-0217-x
[17] Thunderhead Engineering. Pathfinder 2014.2 Verification and Validation (2014).
[18] Thunderhead Engineering. Pathfinder 2016. User Manual (2016).
[19] P. Liszka, Ocena bezpieczeństwa ewakuacji w tunelu pod Luboniem Małym. Master’s Thesis, AGH University of Science and Technology (2018).
[20] P.G. Gipps, B. Marksjo, A microsimulation model for pedestrian flows. Mathematics and Computers in Simulation 27, 95-105 (1985).
[21] M . Moussaïd, N. Perozo, S. Garnier, D. Helbing, G. Theraulaz, The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLOS ONE. 5 (4), 1-7 (2010). doi: 10.1371/journal.pone.0010047
[22] RABT : Forschungsgesellschaft fur Strassen-and Verkehrswesen, Richtlinien fuer Ausstattung und Betrieb von Strassentunneln (2006).

Go to article

Authors and Affiliations

Natalia Schmidt-Polończyk
1
ORCID: ORCID
Zbigniew Burtan
1
ORCID: ORCID
Piotr Liszka
1

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The mutual influence of fatigue processes, abrasive wear and corrosion of chain links on the functional properties of mining round link chains has been presented in this paper. Selected results of experimental investigations in the field of synergic impact of these destructive processes on the operational durability of mining chains have also been presented. The emphasis was given to the necessity of a comprehensive consideration of destructive processes that occur in various conditions of use of round link chains applied in mining machines.
Go to article

Bibliography

[1] www.fasing.pl, accessed: 14.06.2018
[2] E . Remiorz, S. Mikuła, Podstawowe formy degradacji własności użytkowych łańcuchów ogniwowych górniczych stosowanych w maszynach ścianowych. Maszyny Górnicze 35 (3), (2017).
[3] S. Mikuła, Trwałość zmęczeniowa cięgien łańcuchowych górniczych maszyn urabiających i transportowych. Prace Badawcze CMG Komag, Gliwice (1978).
[4] S. Kocańda, Zmęczeniowe niszczenie metali. WNT , Warszawa (1972).
[5] P .M. Wnuk, Pojęcia i zależności w liniowej i nieliniowej mechanice pękania. Eksploatacja i Niezawodność – Maintenance and Reliability 6 (1) (2004).
[6] J. Gubała, E. Zięba, Wykorzystanie mechaniki pękania do określenia wytrzymałości konstrukcji w warunkach oddziaływania korozyjnego. Przegląd Mechaniczny 35 (1) (1976).
[7] K . Kotwica, K. Furmanik, B. Scherf, Wpływ warunków pracy na zużycie i trwałość cięgien łańcuchowych zgrzebłowych przenośników ścianowych w wybranych kopalniach węgla kamiennego. Przegląd Górniczy 67 (11), (2011).
[8] J. Hankus, M. Szot, A. Pytlik, K. Paradowski, Badania łańcuchów ogniwowych górniczych. Materiały Sympozjum Szkoleniowego Europejskiego Studium Menedżerskiego, Jastrzębie Zdrój (2006).
[9] H . Kania, Kształtowanie struktury oraz odporność korozyjna powłoki Zn-Al otrzymanych metodą metalizacji zanurzeniowej. Wydawnictwo Politechniki Śląskiej, Gliwice (2017).
[10] M. Dolipski , E. Remiorz, P. Sobota, J. Osadnik, Komputerowe badania wpływu zużycia den gniazd i flanki zębów bębna na położenie ogniw w gniazdach bębna łańcuchowego. Mechanizacja i Automatyzacja Górnictwa 49 (4), (2011).
[11] M. Dolipski, E. Remiorz, P. Sobota, Determination of dynamic loads of sprocket drum teeth and seats using mathematical model of a scraper conveyor. Arch. Min. Sci. 57 (4), (2012).
[12] M. Dolipski, P. Cheluszka, E. Remiorz, P. Sobota, Innowacyjne górnicze przenośniki zgrzebłowe. Wydawnictwo Politechniki Śląskiej, Gliwice (2017).
[13] A .N. Wieczorek, Influence of Shot Peening on Abrasion Wear in Real Conditions of Ni-Cu-Ausferritic Ductile Iron. Arch Metall. Mater. 61 (4), (2016).
[14] A .N. Wieczorek, Comparative studies on the wear of ADI alloy cast irons as well as selected steels and surfacehardened alloy cast steels in the presence of abrasive. Arch. Metall. Mater. 62 (1), (2017).
[15] S. Mikuła, Ł. Gajda, Metody badań zużycia ściernego łańcuchów górniczych. Zeszyty Naukowe Politechniki Śląskiej, s. Górnictwo 93 (1978).
[16] E . Remiorz, S. Mikuła, Diagnosis of round link chains resistance to abrasive wear. Technicka Diagnostika 27 (1), (2018).
[17] B . Pawlukiewicz, J. Wiederman, Mechanizm niszczenia ogniw łańcuchów górniczych podczas eksploatacji. Inżynieria Materiałowa 19 (5), (1998).
[18] E . Remiorz, S. Mikuła, Eksploatacyjna diagnostyka ogniwowych łańcuchów górniczych stosowanych w pociągowych układach łańcuchowych maszyn ścianowych. Maszyny Górnicze 36 (1), (2018).
Go to article

Authors and Affiliations

Eryk Remiorz
1
ORCID: ORCID
Stanisław Mikuła
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Department of Mining Mechanization and Robotisation, 2 Akademicka Str., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

As the duration of a rock burst is very short and the roadway is seriously damaged after the disaster, it is difficult to observe its characteristics. In order to obtain the dynamic characteristics of a rock burst, a modified uniaxial compression experiment, combined with a high-speed camera system is carried out and the process of a rock burst caused by a static load is simulated. Some significant results are obtained: 1) The velocity of ejected particles is between 2 m/s and 4 m/s. 2) The ratio of elastic energy to plastic energy is about five. 3) The duration from integrity to failure is between 20 ms and 40 ms. Furthermore, by analyzing the stress field in the sample with a numerical method and crack propagation model, the following conclusions can be made: 1) The kinetic energy of the ejected particles comes from the elastic energy released by itself. 2) The ratio of kinetic energy to elastic energy is between 6% and 15%. This can help understand the source and transfer of energy in a rock burst quantitatively.
Go to article

Bibliography

[1] F. Ren, C. Zhu, M. He, Moment Tensor Analysis of Acoustic Emissions for Cracking Mechanisms During Schist Strain Burst. Rock Mech. Rock Eng. 53, 1-2(2019). DOI: 10.1007/s00603-019-01897-3
[2] G . Su Y. Shi, X. Feng, J. Jiang, J. Zhang, Q. Jiang, True-Triaxial Experimental Study of the Evolutionary Features of the Acoustic Emissions and Sounds of Rockburst Processes. Rock Mech. Rock Eng. 51, 375-389 (2018). DOI: 10.1007/ s00603-017-1344-6
[3] F. Gong, Y. Luo, X. Li, X. Si, M. Tao, Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels. Tunn. Undergr. Sp. Tech. 81, 413-427(2018). DOI: 10.1016/j.tust.2018.07.035
[4] S.H. Cho, Y. Ogata, K. Kaneko, A method for estimating the strength properties of a granitic rock subjected to dynamic loading. Int. J. Rock Mech. Min. 42 (4), 561-568(2005). DOI: 10.1016/j.ijrmms.2005.01.004
[5] J. Wang, H.D. Park, Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunn. Undergr. Sp. Tech. 16 (1), 49-57(2001). DOI: 10.1016/S0886-7798(01)00030-X
[6] M.N. Bagde, V. Petorš, Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading. Int. J. Rock Mech. Min. Sci. 42 (2), 237-250(2005). DOI: 10.1016/j.ijrmms.2004.08.008
[7] M. Cai, H. Morioka, P.K. Kaiser, Y. Tasaka, H. Kurose, M. Minami, T. Maejima, Back-analysis of rock mass strength parameters using AE monitoring data. Int. J. Rock Mech. Min. 44 (4), 538-549(2007). DOI: 10.1016/j.ijrmms.2006.09.012
[8] K. Du, M. Tao, X. Li, J. Zhou, Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance. Rock Mech. Rock Eng. 49 (9), 3437-3453(2016). DOI: 10.1007/s00603-016-0990-4
[9] R . Simon, PhD thesis, Analysis of fault-slip mechanisms in hard rock mining, McGill University, Quebec/Montreal, Canada (1999).
[10] N .G. Cook, The failure of rock. Int. J. Rock Mech. Min. 2 (4), 389-403(1965). DOI: 10.1016/0148-9062(65)90004-5
[11] P.N. Calder, D. Madsen, High frequency precursor analysis prior to a rockburst. Int. J. Rock Mech. Min. Geomech. Abstr.26, 3-4 (1989). DOI: 10.1016/0148-9062(89)92469-8
[12] Z.T. Bieniawski, Mechanism of brittle fracture of rock: Part II—experimental studies. Int. J. Rock Mech. Min. 4 (4), 407-423 (1967). DOI: 10.1016/0148-9062(67)90031-9
[13] S.P. Singh, Burst energy release index. Rock Mech. Rock Eng. 21 (2), 149-155 (1988). DOI: 10.1007/BF01043119
[14] A. Kidybiński, Bursting liability indices of coal. Int. J. Rock Mech. Min. Sci. 18 (4), 295-304 (1981). DOI: 10.1016/0148-9062(81)91194-3
[15] A. Tajduś, M. Cala, K. Tajduś, Seismicity and Rock Burst Hazard Assessment in Fault Zones: a Case Study. Arch. Min. Sci. 63 (3), 747-765 (2018). DOI: 10.24425/123695
[16] W.D. Ortlepp, T.R. Stacey, Rockburst mechanisms in tunnels and shafts. Tunn. Undergr. Sp. Tech. 9 (1), 59-65 (1994). DOI: 10.1016/0886-7798(94)90010-8
[17] H . Marcak, Seismicity in mines due to roof layer bending. Arch. Min. Sci. 57 (1), 229-250 (2012). DOI: 10.2478/v10267-012-0016-3
[18] T.J. Williams, C.J. Wideman, D.F. Scott, Case history of a slip-type rockburst. Pure Appl. Geophys. 139, 627-637 (1992). DOI: 10.1007/BF00879955
[19] A.A. Griffith, VI. The phenomena of rupture and flow in solids. Phil. Trans. Math. Phys. Eng. Sci. 221 (582-593), 163-198 (1921). DOI: 10.1098/rsta.1921.0006
Go to article

Authors and Affiliations

Weiyu Zheng
1 2

  1. China University of Mining & Technology (Beijing), School of Energy and Mining Engineering, China
  2. State Key Laboratory of Coal Mining and Clean Utilization, China
Download PDF Download RIS Download Bibtex

Abstract

In order for the ultimate state methods to be applied in dimensioning of the load-bearing elements in a conveyance, it is required that their design loads during their normal duty cycle and under the emergency braking conditions should be first established. Recently, efforts have been made to determine the interaction forces between the shaft steelwork and the conveyance under the normal operating condition [1,2]. Thus far, this aspect has been mostly neglected in design engineering. Measurement results summarised in this paper and confronted with the theoretical data [3] indicate that the major determinant of fatigue endurance of conveyances is the force acting horizontally and associated with the conveyance being hoisted in relation to the vertical force due to the weight of the conveyance and payload.
Go to article

Bibliography

[1] F . Matachowski, PhD thesis, Opracowanie kryteriów projektowania wybranych elementów nośnych naczynia wydobywczego. AGH University of Science and Technology, Kraków, Poland (2011).
[2] S. Wolny, F. Matachowski, Operating Loads of the Shaft Steelwork – Conveyance System dne to Ranchon Irregularities of the Guiding Strings. Arch. Min. Sci. 55 (3), 589-603 (2010).
[3] S. Wolny, Wybrane problemy wytrzymałościowe w eksploatacji górniczych urządzeń wyciągowych. Monografia. Problemy Inżynierii Mechanicznej i Robotyki, AGH, Nr 20, Kraków (2003).
[4] M. Płachno, Metoda dynamiczna badań stanu zmienności naprężeń w cięgnach naczyń wyciągowych powodowanego nierównościami torów prowadzenia. In monograph: Transport szybowy 2007, Wydawnictwo KO MAG, Gliwice, II , 51-60 (2007).
[5] M. Płachno, Mathematical model of transverse vibrations of a high-capacity mining skip due misalignment of the guiding tracks in the hoisting shaft. Arch. Min. Sci. 63 (1), 3-26 (2018).
[6] D . Fuchs, H. Noeller, Untersuchungen an Haupttraggliedern hochbeanspruchter Fördermittel. Sonderabdruck aus Glückauf 124 (9), 512-514 (1998).
[7] M. Płachno, Z. Rosner, Możliwości wczesnego wykrywania procesów zmęczeniowych w cięgnach naczyń wyciągów górniczych. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, Wydanie Specjalne, 241-246 (1997).
[8] S. Wolny, Interactions in mechanical systems due to random inputs on the example of a mine hoist. International Education & Research Journal, Engineering 1 (5), 70-74 (2015).
[9] S. Wolny, Displacements in mechanical systems due to random inputs in a mine hoist installation. Engineering Transactions 65 (3), 513-522 (2017).
[10] S. Wolny et al., Research work, Opracowanie kryteriów oceny konstrukcji nośnej naczyń górniczych wyciągów szybowych w aspekcie przedłużenia okresu bezpiecznej eksploatacji. Katedra Wytrzymałości Materiałów i Konstrukcji, AGH University of Science and Technology, Kraków (2003) (unpublished).
[11] A . Pieniążek, J. Weiss, A. Winiarz, Procesy stochastyczne w problemach i zadaniach. Wydawnictwo Politechniki Krakowskiej, Kraków (1999).
[12] V.A. Sretlickij, Slucajnye kolebanija mechaniceskich system. Moskva: Masinostroenie (1976).
[13] S. Wolny, Loads experienced by load-bearing components of mine hoist installations due to random irregularities and misalignments of the guide strings. Journal of Machine Construction and Maintenance 3 (110), 79-86 (2018).
[14] S. Wolny, S. Badura, Wytrzymałość cięgien nośnych górniczego naczynia wydobywczego. Journal of Civil Engineering, Environment and Architecture 34 (64), 149-158 (2017).
[15] S. Kawulok, Oddziaływanie zbrojenia szybu na mechanikę prowadzenia naczynia wyciągowego. Prace GIG, Katowice (1989).
[16] Przepisy górnicze „Rozporządzenie Rady Ministrów z dnia 30 kwietnia 2004 r. w sprawie dopuszczenia do stosowania w zakładach górniczych (Dz.U. Nr 99, poz. 1003 z 2005 r. Nr 80, poz. 695 oraz z 2007 r. Nr 249, poz. 1853, pkt 1.2 Naczynia wyciągowe” (2004).
Go to article

Authors and Affiliations

Stanisław Wolny
1
ORCID: ORCID

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

It is commonly known that the cause of serious accidents in underground coal mining is methane. Thus, computational fluid dynamics (CFD) becomes a useful tool to simulate methane dispersion and to evaluate the performance of the ventilation system in order to prevent mine accidents related to methane. In this study, numerical and experimental studies of the methane concentration and air velocity behaviour were carried out. The experiment was conducted in an auxiliary ventilated coal heading in Turkish Hard Coal Enterprises (TTK), which is the most predominant coal producer in Turkey. The simulations were modeled using Fluent-Ansys v.12. Significant correlations were found when experimental values and modeling results were compared with statistical analysis. The CFD modeling of the methane and air velocity in the headings especially uses in auxiliary ventilation systems of places where it is hard to measure or when the measurements made are inadequate.
Go to article

Bibliography

[1] J. Toraño, S.Torno, M. Menendez, M. Gent, J. Velasco, Models of methane behaviour in auxiliary ventilation of underground coal mining. Int. J. of Coal Geology 80 (1), 35-43 (2009).
[2] J.K. Richmond, G.C. Price, M.J. Sapko, E.M. Kawenski, Historical summary of coal mine explosions in the United States 1959-1981. In: Bureau of Mines Information Circular (IC-8909), (1983).
[3] The Chamber of Mining Engineers of Turkey (TMMOB), The Occupational Accidents Report in Mining, Turkey (2010).
[4] A .M. Wala, B.J. Kim, Simulation of unsteady-state of airflow and methane concentration processes in mine ventilation systems caused by disturbances in main fan operation. In: Mopusset-Jones (Eds.), the Second US Mine Ventilation Symposium, (1985).
[5] J.S. Edwards, T.X. Ren, R. Jozefowicz, Using CFD to solve mine safety and health problems. In: APCOM XXV Conference, Brisbane, (1995).
[6] M.T. Parra, J.M. Villafruela, F. Castro, C. Méndez, Numerical and experimental analysis of different ventilation systems in deep mines. Building and Env. 41 (2), 87-93 (2006).
[7] J.C. Kurnia, A.P. Sasmito, A.S. Mujumdar, Simulation of Methane Dispersion and Innovative Methane Management in Underground Mining Faces. Appl. Mathematical Modelling 38, 3467-3484 (2014).
[8] J.C. Kurnia, A.P. Sasmito, A.S. Mujumdar, Simulation of A Novel Intermittent Ventilation System for Underground Mines. Tunnelling and Underground Space Technology 42, 206-215 (2014).
[9] X. Wang, X. Liu, Y. Sun, J. An, J. Zhang, H. Chen, Construction schedule simulation of a diversion tunnel based on the optimized ventilation time. J. of Hazard Materials 165, 933-943 (2009).
[10] D. Xie, H. Wang, K.J. Kearfott, Z. Liu, S. Mo, Radon dispersion modeling and dose assessment for uranium mine ventilation shaft exhausts under neutral atmospheric stability. J. of Env. Radioactivity 129, 57-62 (2014).
[11] J. Toraño, S. Torno, M. Menendez, M. Gent, Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour. Tunnelling Underground Space Technology 26, 201-210 (2011) .
[12] A .M. Wala, J.C. Yingling, J. Zhang, Evaluation of the face ventilation systems for extended cuts with remotely operated mining machines using three-dimensional numerical simulations. In: Metall. and Exploration Annual Meeting Society for Mining, (1998).
[13] S .M. Aminossadati, K. Hooman, Numerical simulation of ventilation air flow in underground mine workings. In: 12th U.S./North American Mine Ventilation Symposium, 253-259 (2008).
[14] M. Branny, Computer simulation of flow of air and methane mixture in the longwall-return crossing zone. Petroleum Journals Online, 1-10 (2007).
[15] N .I. Vlasin, C. Lupu, M. Şuvar, V.M. Pasculescu, S. Arad, Computerised modelling of methane releases exhaust from a retreating logwall face. In: 4th European Conference on Recent Advances in Civil and Mining Engineering (ECCIE’13), 274-277 (2013).
[16] Z .H. Zhang, E.K. Hov, N.D. Deng, J.H. Guo, Study on 3D mine tunnel modelling. In: the International Conference on Environment, Ecosystem and Development (EE D’07), 35-40 (2007).
[17] S .M. Radui, G. Dolea, R. Cretan, Modeling and simulation of coal winning process on the mechanized face. In: 4th European Conference on Recent Advances in Civil and Mining Engineering (ECCIE’13), 30-35 (2013).

[18] J. Cheng, S. Li, F. Zhang, C. Zhao, S. Yang, A. Ghosh, J. of Loss Prevention in the Process Industries 40, 285-297 (2016).
[19] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part II: Parametric studies. J. of Naturel Gas Science and Engineering 43, 254-267 (2017b).
[20] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part I: Methane emission and base model results. J. of Naturel Gas Science and Engineering 43, 242-253 (2017a).
[21] Y . Lu, S. Akhtar, A.P. Sasmito, J.C. Kurnia, Prediction of air flow, methane, and coal dust dispersion in a room and pillar mining face. Int. J. of Mining Science and Technology 27, 657-662 (2017).
[22] Q. Zhang, G. Zhou, X. Qian, M. Yuan, Y. Sun, D. Wang, Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation. J. of Cleaner Production 184, 239-250 (2018).
[23] J. Wachowicz, J.M. Laczny, S. Iwaszenko, T. Janoszek, M. Cempa-Balewicz, Modelling of underground coal gasification process using CFD methods. Arch. Min. Sci. 60, 663-676 (2015).
[24] T . Skjold, D. Castellanos, K.L. Olsen, R.K. Eckhoff, Experimental and numerical investigations of constant volume dust and gas explosions in a 3.6-m flame acceleration tube. J. of Loss Prevention in the Process Industries 30, 164-176 (2014).
[25] C.A. Palmer, E. Tuncalı, K.O. Dennen, T.C. Coburn, R.B. Finkelman, Characterization of Turkish coals: a nationwide perspective. Int. J. Coal Geology 60, 85-115 (2004).
[26] S . Toprak, Petrographic properties of major coal seams in Turkey and their formation. Int. J. of Coal Geology 78, 263-275 (2009).
[27] A .E. Karkınlı, T. Kurban, A. Kesikoglu, E. Beşdok, CFD based risk simulations and management on CBS. In: Congress of Geographic Information Systems, Antalya, Turkey (2011). [28] http://www.theatc.org/events/cleanenergy/pdf/TuesdayMorningBallroom2&3/Bicer, accessed: 09.05.2012.
[29] Turkish Hard Coal Enterprises (TT K), Turkish Hard Coal Enterprise general management activities between 2003 and 2009, (2009).
[30] I. Diego, S. Torno, J. Torano, M. Menendez, M. Gant, A practical use of CFD for ventilation of underground works. Tunnelling Underground Space Technology 26, 189-200 (2011).
[31] S . Torno, J. Torano, M. Ulecia, C. Allende, Conventional and numerical models of blasting gas behaviour in auxiliary ventilation of mining headings. Tunnelling Underground Space Technology 34, 73-81 (2013).
[32] Z . Altaç, Modeling Samples with Gambit and Fluent. Depart. of the Mech. Eng. of Eskisehir Osmangazi Univ., Turkey (2005).
[33] A . Konuk, S. Önder, Statistics for Mining Engineers. Depart. of the Mining Eng. of Eskisehir Osmangazi Univ., Turkey (1999).
Go to article

Authors and Affiliations

Gülnaz Daloğlu
1
Mustafa Önder
1
Teresa Parra
2

  1. Eskişehir Osmangazi Üniversitesi Müh. Mim. Fak. Maden Mühendi sliği Bölümü, 26480 Eskişehir, Turkey
  2. University of Valladolid, Department of Energy and Fluid Mechanics, Valladolid, Spain
Download PDF Download RIS Download Bibtex

Abstract

The impact of caulking of goafs after mining exploitation of a hard coal seam with caving is expressed as the change in value of a a exploitation coefficient which, as defined, is the quotient of the maximum reduction in the surface height of a complete or incomplete trough to the thickness of the exploited seam. The basis for determining the value of the exploitation coefficient was geological and mining data combined with the results of the measurement of subsidence on the surface – measuring line 1222-1301 – of the Ruda mine. There, mining was carried out between 2005 and 2019, with a transverse longwall system and the caulking of goafs. The research team used two methods to determine the impact of the caulking applied in the goafs on the value of the exploitation coefficient. In the first method the goafs are filled evenly along the whole longwall, and in the second method unevenly and on a quarterly basis. The determination of the values of the exploitation coefficients for selected measuring points was preceded by the determination of the parameters of the Knothe-Budryk theory, which was further developed by J. Białek. The obtained dependencies are linear and the values of the correlation coefficients fall between –0.684 and –0.702, which should be considered satisfactory in terms of experimental data. It is possible to reduce the value of the exploitation coefficient by caulking the goafs by about 18%, when filling the goafs to 0.26% of the height of the active longwall.
Go to article

Bibliography

[1] J. Białek, Opis nieustalonej fazy obniżeń terenu górniczego z uwzględnieniem asymetrii wpływów końcowych. Zeszyty Naukowe Politechniki Śląskiej (1), 1991.
[2] J. Białek, Algorytmy i programy komputerowe do prognozowania deformacji terenu górniczego. Wydawnictwo Politechniki Śląskiej 2003.
[3] Y. Jiang, R. Misa, K. Tajduś, A. Sroka, A new prediction model of surface subsidence with Cauchy distribution in the coal mine of thick topsoil condition. Archives of Mining Sciences 65 (1), 147-158 (2020), doi: 10.24425/132712
[4] S. Knothe, Prognozowanie wpływów eksploatacji górniczej. 1984 Wydawnictwo Śląsk, Katowice.
[5] A. Kowalski, Deformacje powierzchni terenu górniczego kopalń węgla kamiennego. 2020 Wydawnictwo Głównego Instytutu Górnictwa, Katowice.
[6] H . Kratzsch Bergschadenkunde, 2008 Deutscher Markscheider-Verein e.v., Bochum.
[7] M. Mazurkiewicz, Z. Piotrowski, Grawitacyjne podsadzanie płytkich zrobów zawiesiną popiołów lotnych w wodzie. Ochrona Terenów Górniczych 66, 6-8 (1984).
[8] M. Mazurkiewicz, Technologiczne i środowiskowe aspekty stosowania stałych odpadów przemysłowych do wypełniania pustek w kopalniach podziemnych. Zeszyty Naukowe AGH, Górnictwo nr 152, (1990).
[9] T. Niemiec, Porowatość zrobów a współczynnik eksploatacyjny. Sbornik referatu XVIII, Konference SDMG, 161- 167 (2011).
[10] W . Piecha, S. Szewczyk, T. Rutkowski, Ochrona powierzchni dzielnicy Wirek w świetle dokonanej i prowadzonej podziemnej eksploatacji górniczej. Przegląd Górniczy (2) 55-66, (2019).
[11] Z . Piotrowski, M. Mazurkiewicz, Chłonność doszczelnianych zrobów zawałowych. Górnictwo i Geoinżynieria 30 (3), 37-45 (2006).
[12] F. Plewa, Z. Mysłek., G. Strozik, Zastosowanie odpadów energetycznych do zestalania rumowiska skalnego. Polityka Energetyczna XI (1), 351-360 (2008).
[13] P. Polanin, A. Kowalski, A. Walentek, Numerical simulation of subsidence caused by roadway system. Archives of Mining Sciences 64 (2), 385-397 (2019), doi: 10.24425/1286090
[14] E . Popiołek, Z. Niedojadło, P. Sopata, T. Stoch, Możliwości wykorzystania pogórniczych niecek obniżeniowych do oszacowania objętości pustek w zrobach poeksploatacyjnych. (2014).
[15] T. Rutkowski, Ocena wpływu podsadzania zrobów zawałowych na obniżenia powierzchni terenu w warunkach górnośląskiego zagłębia węglowego. Główny Instytut Górnictwa, praca doktorska, Katowice, 2019.
[16] R. Ślaski, Warunki zatapiania kopalni „Morcinek”. Materiały konferencyjne SITG Oddział Rybnik. Ochrona środowiska na terenach górniczych podziemnych i odkrywkowych zlikwidowanych zakładów górniczych w subregionie zachodnim województwa śląskiego, (2010).
[17] Subsidence Engineers’ Hand book, National Coal Board Mining Department, 1975.
[18] A. Stanisz, Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny (1). Statystyki podstawowe, StatSoft Polska, 2006, Kraków.
[19] P. Strzałkowski, Doszczelnianie zrobów zawałowych a deformacje powierzchni terenu. Materiały Konferencyjne Szkoły Eksploatacji Podziemnej. Centrum Podstawowych Problemów Gospodarki Surowcami Mineralnymi i Energią PAN , 27-40 (1995).
[20] D .N. Whittaker, D.J Reddish, Subsidence. Occurrence, Prediction and Control, 1989 Elsevier, Amsterdam, Oxford, New York, Tokyo.
[21] J . Zhang, Q. Sun, N. Zhou, J. Haiqiang, D. Germain., S. Abro, Research and application of roadway backfill coal mining technology in western coal mining area. Arab J. Geosci. (9:558), 1-10 (2016).
[22] H . Zhu, F. He, S. Zhang, Z. Yang, An integrated treatment technology for ground fissures of shallow coal seam mining in the mountainous area of southwestern China a typical case study. Gospodarka Surowcami Mineralnymi- Mineral Resources Management (34), 119-138 (2018), doi: 10.24425/118641
[23] J. Zych, R. Żyliński, P. Strzałkowski, Wpływ doszczelniania zrobów zawałowych na wielkość deformacji powierzchni. Materiały Konferencji naukowo-technicznej II Dni Miernictwa Górniczego i Ochrony Terenów Górniczych, 307-311 (1993).
Go to article

Authors and Affiliations

Andrzej Kowalski
1
ORCID: ORCID
Jan Białek
2
ORCID: ORCID
Tadeusz Rutkowski
3
ORCID: ORCID

  1. Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  3. PGG S.A. KWK Ruda, Ruda Śląska, Poland
Download PDF Download RIS Download Bibtex

Abstract

Stability control of the roof is the key to safe and efficient mining of the longwall working face for a steeply dipping coal seam. In this study, a comprehensive analysis was performed on the roof destruction, migration, and filling characteristics of a steeply dipping longwall working face in an actual coalmine. Elastic foundation theory was used to construct a roof mechanics model; the effect of the coal seam inclination angle on the asymmetric deformation and failure of the roof under the constraint of an unbalanced gangue filling was considered. According to the model, increasing the coal seam angle, thickness of the immediate roof, and length of the working face as well as decreasing the thickness of the coal seam can increase the length of the contact area formed by the caving gangue in the lower area of the slope. Changes to the length of the contact area affect the forces and boundary conditions of the main roof. Increasing the coal seam angle reduces the deformation of the main roof, and the position of peak deflection migrates from the middle of the working face to the upper middle. Meanwhile, the position of the peak rotation angle migrates from the lower area of the working face to the upper area. The peak bending moment decreases continuously, and its position migrates from the headgate T-junction to the tailgate T-junction and then the middle of the working face. Field test results verified the rationality of the mechanics model. These findings reveal the effect of the inclination coal seam angle on roof deformation and failure and provide theoretical guidance for engineering practice.
Go to article

Bibliography

[1] Y.P. Wu, D.F Yun, P.S. Xie et al., Progress, practice and scientific issues in steeply dipping coal seams fullymechanized mining. J. China Coal Soc. 45 (01):24-34 (2020) (in Chinese).
[2]. Y.P. Wu, B.S. Hu, D Lang et al., Risk assessment approach for rockfall hazards in steeply dipping coal seams. Int. J. Rock Mech. Min. Sci. 138, 104626 (2021). doi: 10.1016/j.ijrmms.2021.104626
[3] D .Y. Zhu, W.L. Gong, Y. Su et al., Application of High-Strength Lightweight Concrete in Gob-Side Entry Retaining in Inclined Coal Seam. Advances in Materials Science and Engineering (2020). doi: 10.1155/2020/8167038
[4] H .W. Wang, Y.P. Wu, J.Q. Jiao et al., Stability Mechanism and Control Technology for Fully Mechanized Caving Mining of Steeply Inclined Extra-Thick Seams with Variable Angles. Mining, Metall. Explor. (2020). doi: 10.1007/ s42461-020-00360-0
[5] R .A. Frumkin, Predicting rock behaviour in steep seam faces (in Russian). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 20 (1), A12-A13 (1983). doi: 10.1016/0148-9062(83)91717-5
[6] A. Ladenko, Improvements in working steep seams. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 11 (12), 247. (1974). doi: 10.1016/0148-9062(74)92108-1
[7] Z. Rak, J. Stasica, Z. Burtan et al., Technical aspects of mining rate improvement in steeply inclined coal seams: A case study. Resources 9 (12), 1-16 (2020). doi: 10.3390/resources9120138
[8] H .S. Tu, S.H. Tu, C. Zhang et al., Characteristics of the Roof Behaviours and mine pressure manifestations during the mining of steep coal seam. Arch. Min. Sci. 62 (4), 871-890 (2020).
[9] P .S. Xie, Y.P. Wu, Deformation and failure mechanisms and support structure technologies for goaf-side entries in steep multiple seam mining disturbances. Arch. Min. Sci. 64 (3), 561-574 (2019). doi: 10.24425/ams.2019.129369
[10] Z.Y.Wang, L.M. Dou, J. He et al., Experimental investigation for dynamic instability of coal-rock masses in horizontal section mining of steeply inclined coal seams. Arabian Journal of Geosciences 13, 15 (2020). doi: 10.1007/ s12517-020-05753-5
[11] P .S. Xie, Y. Luo, Y.P. Wu et al., Roof Deformation Associated with Mining of Two Panels in Steeply Dipping Coal Seam Using Subsurface Subsidence Prediction Model and Physical Simulation Experiment. Mining, Metall. Explor. 37 (2), 581-591 (2020). doi: 10.1007/s42461-019-00156-x
[12] X.P. Lai, H. Sun, P.F. Shan et al., Structure instability forecasting and analysis of giant rock pillars in steeply dipping thick coal seams. Int. J. Miner. Metall. Mater. 22 (12), 1233-1244 (2015). doi: 10.1007/s12613-015-1190-z
[13] Y.P. Wu, B.S. Hu, P.S. Xie, A New Experimental System for Quantifying the Multidimensional Loads on an on-Site Hydraulic Support in Steeply Dipping Seam Mining. Exp. Tech. 43 (5), 571-585 (2019). doi: 10.1007/s40799-019- 00304-4
[14] Y.D. Zhang, J.Y. Cheng, X.X. Wang et al., Thin plate model analysis on roof break of up-dip or down-dip mining stope. J. Min. Saf. Eng. 27 (4), 487 (2010) (in Chinese).
[15] J.R. Cao, L.M. Dou, G.A. Zhu et al., Mechanisms of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam and Prevention Technology. Energies 13 (22), 6043 (2020). doi: 10.3390/en13226043
[16] H .W. Wang, Y.P. Wu, M. Liu et al., Roof-breaking mechanism and stress-evolution characteristics in partial backfill mining of steeply inclined seams. Geomatics, Natural Hazards and Risk 11 (1), 2006-2035 (2020). doi: 10.1080/1 9475705.2020.1823491
[17] S.R. Islavath, D. Deb, H. Kumar, Numerical analysis of a longwall mining cycle and development of a composite longwall index. Int. J. Rock Mech. Min. Sci. 89, 43-54 (2016).
[18] H . Basarir, O.I. Ferid, O. Aydin, Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis. Int. J. Rock Mech. Min. Sci. 76, 88-97 (2015). doi: 10.1016/j.ijrmms.2015.03.001
[19] J.A. Wang, J.L. Jiao, Criteria of support stability in mining of steeply inclined thick coal seam. Int. J. Rock Mech. Min. Sci. 82, 22-35 (2016). doi: 10.1016/j.ijrmms.2015.11.008
[20] W.Y. Lv, Y.P. Wu, M. Liu et al., Migration law of the roof of a composited backfilling longwall face in a steeply dipping coal seam. Minerals 9 (3) (2019). doi: 10.3390/min9030188
[21] C.F. Huang, Q. Li, S.G.Tian, Research on prediction of residual deformation in goaf of steeply inclined extra- thick coal seam. PLoS ONE 15, 1-14 (2020). doi: 10.1371/journal.pone.0240428
[22] Y.C. Yin, J.C. Zou, Y.B. Zhang et al., Experimental study of the movement of backfilling gangues for goaf in steeply inclined coal seams. Arabian Journal of Geosciences 11 (12) (2018). doi: 10.1007/s12517-018-3686-0
[23] G .S.P Singh, U.K. Singh, Prediction of caving behavior of strata and optimum rating of hydraulic powered support for longwall workings. Int. J. Rock Mech. Min. Sci. 47, 1-16 (2010).
[24] P .S. Xie, Y.Y. Zhang, S.H. Luo et al., Instability Mechanism of a Multi-Layer Gangue Roof and Determination of Support Resistance Under Inclination and Gravity. Mining, Metall. Explor. 37 (5), 1487-1498 (2020). doi: 10.1007/ s42461-020-00252-3
[25] G .J. Wu, W.D. Chen, S.P. Jia et al., Deformation characteristics of a roadway in steeply inclined formations and its improved support. Int. J. Rock Mech. Min. Sci. 130, 104324 (2020). doi: 10.1016/j.ijrmms.2020.104324
[26] Y.Q. Long, Numerical computation of beam on elastic foundation. People’s Education Press, Beijing (1981).

Go to article

Authors and Affiliations

Shenghu Luo
1
ORCID: ORCID
Tong Wang
2
ORCID: ORCID
Yongping Wu
2
ORCID: ORCID
Jingyu Huangfu
2
ORCID: ORCID
Huatao Zhao
3
ORCID: ORCID

  1. Xi’an University of Science and Technology, Department of Mechanics, China
  2. Xi’an University of Science and Technology, School of Energy Engineering, China
  3. Shandong Mining Machinery Group Co., Ltd. China
Download PDF Download RIS Download Bibtex

Abstract

Underground mining development is directly related to face drilling rig performance. Reducing operating costs and improving productivity are current and crucial topics for mining projects around the world within the development phase. Unlike past approaches, this article is based on variations of equipment availability and utilisation, and their impact on development plans success and costs decrease. To assess the influence of these parameters, daily field data were collected to identify major downtimes in normal cycles and apply adequate corrective measures to mitigate them. Additionally, this article presents the reader with a graphic illustration of the correlation between utilisation and development, including historical data. This paper was developed from October 2017 to March 2018. The result of this study seeks to identify when projects generate profits by comparing four situations with constant productivity, but variables such as the possession rate, maintenance fee, production and utilisation. Finally, it is demonstrated that success in mining projects, related to equipment, is proportional to the utilisation of the fleet, with the correct management of productivities.
Go to article

Bibliography

[1] S. Elevli, B. Elevli, Performance Measurement of Mining Equipments by Utilizing OEE. Acta Montan. Slovaca 15, 95-101 (2010),
[2] C. Hegde, K.E. Gray, Use of machine learning and data analytics to increase drilling efficiency for nearby wells. Journal of Natural Gas Science and Engineering 40, 327-335 (2017). https://doi.org/10.1016/j.jngse.2017.02.019
[3] B . A. Kansake, R. S. Suglo, Impact of Availability and Utilization of Drill Rigs on Production at Kanjole Minerals Limited. International Journal of Science, Environment and Technology 4, 6, 1524-1537.
[3] J. Valivaara, Automated Drilling Features for Improving Productivity and Reducing Costs in Underground Development. Global Trends, 9-11.
[4] B . Samatemba, L. Zhang, Evaluating and optimizing the effectiveness of mining equipment; the case of Chibuluma South underground mine. Journal of Cleaner Production 252 119697 (2020).
[5] D . Henao, MBA thesis, Aplicación de la Metodología Kaizen a las operaciones en la mina en la empresa de explotación de cobre Miner S.A. Universidad Eafit, Escuela de Administración, Medellín (2019).
Go to article

Authors and Affiliations

Sebastian Arenas Bermúdez
1
ORCID: ORCID
Cristian Gerardo Zapata Otalora
1
Jorge Martin Molina Escobar
1
ORCID: ORCID

  1. Universidad Nacional de Colombia, Mines Faculty, Colombia
Download PDF Download RIS Download Bibtex

Abstract

Use of the poroelasticity theory by Biot in the description of rock behaviour requires the value of the e.g. Biot coefficient α to be determined. The α coefficient is a function of two moduli of compressibility: the modulus of compressibility of the rock skeleton Ks and the effective modulus of compressibility K. These moduli are determined directly on the basis of rock compressibility curves obtained during compression of a rock sample using hydrostatic pressure. There is also a concept suggesting that these compressibility moduli might be determined on the basis of results of the uniaxial compression test using the fact that, in the case of an elastic, homogeneous and isotropic material, the modulus of compressibility of a material is a function of its Young modulus and its Poisson ratio. This work compares the results obtained from determination of the Biot coefficient by means of results of compressibility test and uniaxial compression test. It was shown that the uniaxial compression test results are generally unsuitable to determine the value of the coefficient α. An analysis of values of the determined moduli of compressibility shows that whereas the values of effective moduli of compressibility obtained using both ways may be considered as satisfactorily comparable, values of the relevant rock skeleton moduli of compressibility differ significantly.
Go to article

Bibliography

[1] M.A. Biot, General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 12, 155-164 (1941).
[2] M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182-185 (1945).
[3] A. Nur, J.D. Byerlee, An Exact Effective Stress Law for Elastic Deformation of Rock with Fluids. J. Geophys. Res. 76 (26), 6414-6419 (1971).
[4] D . Fabre, J. Gustkiewicz J., Poroelastic Properties of Limestones and Sandstones under Hydrostatic Conditions. Int. J. Rock Mech. Min. Sci. 34 (1), 127-134 (1997).
[5] D . Fabre, J. Gustkiewicz, Influence of rock porosity on the Biot’s coefficient. In: Thismus et al. (eds.), Poromechanics – A Tribute to Maurice A. Biot. Procedings of the Biot Confference on Poromechanics, Louvain-la-Neuve (Belgium), 14-16 September 1998, Balkema, Rotterdam (1998).
[6] J . Gustkiewicz, Compressibility of rocks with a special consideration given to pore pressure. In: Thismus et al. (Eds.), Poromechanics – A Tribute to Maurice A. Biot. Proceedings of the Biot Conference on Poromechanics, Louvain-la-Neuve (Belgium), 14-16 September 1998, Balkema, Rotterdam (1998).
[7] M. Lion, F. Skoczylas, B. Ledésert, Determination of the main hydraulic and poroelastic properties of a limestone from Bourgogne, France. Int. J. Rock Mech. Min. Sci. 41, 915-925 (2004).
[8] J . Gustkiewicz, Objętościowe deformacje skały i jej porów (Volume deformations of the rock and its pores). Arch. Min. Sci. 34 (3), 593-609 (1989) (in Polish).
[9] J . Gustkiewicz, Synoptic view of mechanical behaviour of rocks under triaxial compression. In: Rock at Great Depth. Proceedings International Symposium ISRM-SPE, Pau, 28-31 VIII 1989, V. Maury, D. Fourmaintraux (Eds.), Balkema, Rotterdam, 3-10 (1989).
[10] J .B. Walsh, The effect of cracks on compressibility of rock. J. Geophys. Res. 70, 381-389 (1965).
[11] J .C. Jaeger, N.G.W. Cook, R.W. Zimmerman, Fundamentals of Rock Mechanics. 2007 Blackwell Publishing, Malden-Oxford-Carlton.
[12] H .F. Wang, Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. 2000 Princeton University Press, Princeton & Oxford.
[13] Z .T. Bieniawski, J.A. Franklin, M.J. Bernede, P. Duffaut, F. Rumpel, T. Horibe, F. Broch, E. Rodrigues, W.E. van Heerden, U.W. Vogler, I. Hansagi, J. Szlavin, B.T. Brady, D.U. Deere, I. Hawkes, D. Milovanovic, Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 16 (2), 135-140 (1979).
[14] K . Kovári, A. Tisa, H.H. Einstein, J.A. Franklin, Suggested Methods for Determining the Strength of Rock Materials in Triaxial Compression: Revised Version. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 20 (6), 283-290 (1983).
[15] M. Długosz, J. Gustkiewicz, A. Wysocki, Apparatus for investigation of rock in three-axial state of stress. Part I. Characteristics of the apparatus and of the investigation method. Arch. Min. Sci. 26 (1), 17-28 (1981).
[16] M. Długosz, J. Gustkiewicz, A. Wysocki, Apparatus for investigation of rock in three-axial state of stress. Part II. Some investigation results concerning certain rocks. Arch. Min. Sci. 26 (1), 29-41 (1981).
[17] J . Nurkowski, An inductive strain sensor for operation in high pressure environments. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 41, 175-180 (2004).
[18] R . Ulusay, J.A. Hudson (Eds.), Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. In: The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, 2007 Kozan Ofset Matbaacilik San. Ve Tic. Sti., Ankara.
[19] R. Přikryl, J. Prikrylová, M. Racek, Z. Weishauptová, K. Kreislová, Decay mechanism of indoor porous opuka stone: a case study from the main altar located in the St. Vitus Cathedral. Environmental Earth Sciences 76 (2017).
[20] J . Rychlewski, Note on the beginning of plastic deformation in a body under uniform pressure. Archives de Mécanique Appliquée 17 (3), 405-412 (1965).
Go to article

Authors and Affiliations

Andrzej Nowakowski
1
ORCID: ORCID
Janusz Nurkowski
1
ORCID: ORCID

  1. Strata Mechanics Research Institute of the Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents different approaches to the proper and accurate production and modelling (multi- phase reaction) of CaCO3 formation in the most popular, different types of reactors, i.e. continuous reactor (STR – stirred tank reactors, MSMPR – mixed suspension, mixed product removal; tube reactor), a bubble column reactor and a thin film reactor.
Many different methods of calcium carbonate production and their effect on the various characteristics of the product have been presented and discussed. One of the most important, from the point of view of practical applications, is the morphology and size of the produced particles as well as their agglomerates and size distribution. The size of the obtained CaCO3 particles and their agglomerates can vary from nanometers to micrometers. It depends on many factors but the most important are the conditions calcium carbonate precipitation and then stored.
The experimental research was strongly aided by theoretical considerations on the correct description of the process of calcium carbonate precipitation. More than once, the correct modelling of a specific process contributed to the explanation of the phenomena observed during the experiment (i.e. formation of polyforms, intermediate products, etc.).
Moreover, different methods and approaches to the accurate description of crystallization processes as well as main CFD problems has been widely reviewed. It can be used as a basic material to formulation and implementation of new, accurate models describing not only multiphase crystallization processes s taking place in different chemical reactors.
Go to article

Bibliography

Auone A., Ramshaw C., 1999. Process intensification: Heat and mass transfer characteristics of liquid films on rotating discs. Int. J. Heat Mass Transfer, 42, 2543-2556. DOI: 10.1016/S0017-9310(98)00336-6.
Baldyga J., Bourne J.R., 1984a. A fluid mechanical approach to turbulent mixing and chemical reaction. Part I: Inadequacies of available methods. Chem. Eng. Commun., 28, 231–241. DOI: 10.1080/00986448408940135.
Baldyga J., Bourne J.R., 1984b. A fluid mechanical approach to turbulent mixing and chemical reaction. Part II: Mi- cromixing in the light of turbulence theory. Chem. Eng. Commun., 28, 243–258. DOI: 10.1080/00986448408940136.
Baldyga J., Bourne J.R., 1984c. A fluid mechanical approach to turbulent mixing and chemical reaction. Part III: Computational and experimental results for the new micromixing model. Chem. Eng. Commun., 28, 259–281. DOI: 10.1080/00986448408940137.
Baldyga J., Podgorska W., Pohorecki R., 1995. Mixing-precipitation model with application to double feed semibatch precipitation . Chem. Eng. Sci., 50, 1281–1300. DOI: 10.1016/0009-2509(95)98841-2.
Bandyopadhyaya R., Kumar R., Gandhi K.S., 2001. Modelling of CaCO3 nanoparticle formation during overbasing of lubricating oil additive. Langmuir, 17, 1015–1029. DOI: 10.1021/la000023r.
Bao W., Li H., Zhang Y., 2009. Preparation of monodispersed aragonite microspheres via a carbonation crystal- lization pathway. Cryst. Res. Technol., 44, 395–401. DOI: 10.1002/crat.200800065.
Boodhoo K.V.K., Jachuck R.J.J., 2000. Process intensification: Spinning disc reactor for condensation polymeriza- tion. Green Chem., 2, 235–244. DOI: 10.1039/b002667k.
Burns J.R., Jachuck R.J.J., 2005. Monitoring of CaCO3 production on a spinning disc reactor using conductivity measurements. AIChE J., 51, 1497–1507. DOI: 10.1002/aic.10414.
Cafiero L.M., Baffi G., Chianese A., Jachuck R.J.J., 2002. Process intensification: precipitation of barium sulfate using a spinning disk reactor. Ind. Eng. Chem. Res., 41, 5240–5246. DOI: 10.1021/ie010654w.
Chakraborty D., Bhatia S.K., 1996. Formation and aggregation of polymorphs in continuous precipitation. 2. Kinetics of CaCO3 precipitation. Ind. Eng. Chem. Res., 35, 1995–2006. DOI: 10.1021/ie950402t.
Chen J.F., Wang Y.H., Guo F., Wang X.M., Zheng, Ch., 2000. Synthesis of nanoparticles with novel technology: High-gravity reactive precipitation. Ind. Eng. Chem. Res., 39, 948–954. DOI: 10.1021/ie990549a.
Chen P.-C., Tai C.Y., Lee K.C., 1997. Morphology and growth rate of calcium carbonate crystals in a gas-liquid-solid reactive crystallizer. Chem. Eng. Sci., 52, 4171–4177. DOI: 10.1016/S0009-2509(97)00259-5.
Cheng B., Lei M., Yu J., Zhao X., 2004. Preparation of monodispersed cubic calcium carbonate particles via precipitation reaction. Materials Lett., 58, 1565–1570. DOI: 10.1016/j.matlet.2003.10.027.
Colfen H., Antonietti M., 2005. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed., 44, 5576–5591. DOI: 10.1002/anie.200500496.
Collier A.P., Hounslow M.J., 1999. Growth and aggregation rates for calcite and calcium oxalate monohydrate. AIChE J., 45, 2298–2305. DOI: 10.1002/aic.690451105.
Czaplicka N., Konopacka-Łyskawa D., 2019. The overview of reactors used for the production of precipitated tion route. Aparatura Badawcza i Dydaktyczna, 24(1), 83–90.
Dindore V.Y., Brilman D.W.F., Versteeg G.F., 2005. Hollow fiber membrane contactor as a gas–liquid model contactor. Chem. Eng. Sci., 60, 467–479. DOI: 10.1016/j.ces.2004.07.129.
Ding L., Wu B., Luo P. 2018. Preparation of CaCO3 nanoparticles in a surface-aerated tank stirred by a long-short blades agitator. Powder Technol., 333, 339–346. DOI: 10.1016/j.powtec.2018.04.057.
Eek R.A., Dijkstra S., Van Rosmalen G.M., 1995. Dynamic modeling of suspension crystallisers using experimental data. AIChE J., 41, 571–584. DOI: 10.1002/aic.690410315.
Feng B., Yonga A.K., Ana H., 2007. Effect of various factors on the particle size of calcium carbonate formed in a precipitation process. Mater. Sci. Eng., A, 445–446, 170–179. DOI: 10.1016/j.msea.2006.09.010.
Ferziger J.H., Perić, M., 1996. Computational methods for fluid dynamics, Springer-Verlag, Berlin, Germany.
Gahn C., Mersmann A., 1999. Brittle fracture in crystallization processes. Part A. Attrition and abrasion of brittle solids. Chem. Eng. Sci., 54, 1273–1282. DOI: 10.1016/S0009-2509(98)00450-3.
Garside J., Davey R.J., 1980. Invited review secondary contact nucleation: kinetics, growth and scale-up. Chem. Eng. Commun., 4, 393–424. DOI: 10.1080/00986448008935918.
Grimes C.J., Hardcastle T., Manga M.S., Mahmud T., York D.W., 2020. Calcium carbonate particle formation through precipitation in a stagnant bubble and a bubble column reactor. Cryst. Growth Des., 20, 5572–5582. DOI: 10.1021/acs.cgd.0c00741.
Hill P.J., Ng K.M., 1995. New discretization procedure for the breakage equation. AIChE J., 41, 1204–1217. DOI: 10.1002/aic.690410516.
Hindmarsh A.C., 1983. ODEPACK, A Systematized collection of ODE solvers, In: Stepleman R.S., Carver M., Peskin R., Ames W.F., Vichnevetsky R. (Eds.). Scientific Computing, North-Holland, Amsterdam, 1983, 55–64.
Hostomsky J., Jones A.G., 1991. Calcium carbonate crystallization, agglomeration and form during continuous precipitation from solution. J. Phys. D: Appl. Phys., 24, 165–170. DOI: 10.1088/0022-3727/24/2/012.
Hounslow M.J., 1990. A discretized population balance for continuous systems at steady state. AIChE J., 36, 106–116. DOI: 10.1002/aic.690360113.
Hounslow M.J.; Ryall R.L., Marshall V.R., 1988. A discretized population balance for nucleation, growth, and aggregation. AIChE J., 34, 1821–1832. DOI: 10.1002/aic.690341108.
Hounslow M.J., Mumtaz H.S., Collier A.P., Barrick J.P., Bramley A.S., 2001. A micro mechanical model for the rate of aggregation during precipitation from solution. Chem. Eng. Sci., 56, 2543–2552. DOI: 10.1016/S0009- 2509(00)00436-X.
Hulburt H.M., Katz S., 1964. Some problems in particle technology – statistical mechanical formulation. Chem. Eng. Sci., 19, 555–574. DOI: 10.1016/0009-2509(64)85047-8.
Jones A.G., Rigopoulos S., Zauner R., 2005. Crystallization and precipitation engineering. Comput. Chem. Eng., 29, 1159-1166. DOI: 10.1016/j.compchemeng.2005.02.022.
Judat B., Kind M., 2004. Morphology and internal structure of barium sulfate – derivation of a new growth mechanism. J. Colloid Interface Sci., 269, 341–353. DOI: 10.1016/j.jcis.2003.07.047.
Jung T., Kim W.S., Choi Ch.K., 2004. Effect of nonstoichiometry on reaction crystallization of calcium carbonate in a Couette−Taylor reactor. Cryst. Growth Des, 4, 491–495. DOI: 10.1021/cg034240c.
Jung T., Kim W.S., Choi Ch.K., 2005. Effect of monovalent salts on morphology of calcium carbonate crystallized in Couette-Taylor reactor. Cryst. Res. Technol., 40, 586–592. DOI: 10.1002/crat.200410387.
Jung W.M., Kang S.H., Kim W.S., Choi C.K., 2000. Particle morphology of calcium carbonate precipitated by gas- liquid reaction in a Couette-Taylor reactor. Chem. Eng. Sci., 55, 733–747. DOI: 10.1016/S0009-2509(99)00395-4.
Kang S.H., Lee S.G., Jung W.M., Kim M.C., Kim W.S., Choi C.K., Feigelson R.S., 2003. Effect of Taylor vortices on calcium carbonate crystallization by gas–liquid reaction. J. Cryst. Growth, 254, 196–205. DOI: 10.1016/S0022- 0248(03)01152-7.
Kangwook L., Jay H.L., Dae R.Y., Mahoney A.W., 2002. Integrated run-to-run and on line model-based con- trol of particle size distribution for a semi-batch precipitation reactor. Comput. Chem. Eng., 26, 1117–1131. DOI: 10.1016/S0098-1354(02)00030-3.
Kakaraniya S., Gupta A., Mehra A., 2007. Reactive precipitation in gas-slurry systems: The CO2 – Ca(OH)2 – CaCO3 System. Ind. Eng. Chem. Res., 46, 3170–3179. DOI: 10.1021/ie060732l.
Kataki, Y., Tsuge H., 1990. Reactive crystallization of calcium carbonate by gas–liquid and liquid–liquid reactions. Can. J. Chem. Eng., 68, 435–442. DOI: 10.1002/cjce.5450680313.
Kędra-Królik K., Gierycz P., 2006. Obtaining calcium carbonate in a multiphase system by the use of new rotating disc precipitation reactor. J. Therm. Anal. Calorim., 83, 579–582. DOI: 10.1007/s10973-005-7416-y.
Kędra-Królik K., Gierycz P., 2009. Precipitation of nanostructured calcite in a controlled multiphase process. J. Cryst. Growth, 311, 3674–3681. DOI: 10.1016/j.jcrysgro.2009.05.017.
Kędra-Królik K., Gierycz P., 2010. Simulation of nucleation and growing of CaCO3 nanoparticles obtained in the rotating disk reactor. J. Cryst. Growth, 312, 1945–1952. DOI: 10.1016/j.jcrysgro.2010.02.036.
Kim W.S., 2014. Application of Taylor vortex to crystallization. J. Chem. Eng. Jpn, 47, 115–123. DOI: 10.1252/jcej.13we143.
Kitano Y., Park K., Hood D.W., 1962. Pure aragonite synthesis. J. Geophys. Res., 67, 4873–4874. DOI: 10.1029/JZ067i012p04873.
Konopacka-Łyskawa D., Cisiak Z., Kawalec-Pietrenko B., 2009. Effect of liquid circulation in the draft-tube reactor on precipitation of calcium carbonate via carbonation. Powder Technol., 190, 319–323. DOI: 10.1016/j.powtec.2008.08.014.
Kramer H.J.M., Dijkstra J.W., Verheijen P.J.T., Van Rosmalen G.M., 2000. Modeling of industrial crystallizers for control and design purposes. Powder Technol., 108, 185–191. DOI: 10.1016/S0032-5910(99)00219-3.
Kulikov V., Briesen H., Marquardt W. 2005. Scale integration for the coupled simulation of crystallization and fluid dynamics. Chem. Eng. Res. Des., 83, 706–717. DOI: 10.1205/cherd.04363.
Kumar S., Ramkrishna D., 1996. On the solution of population balance equations by discretization – II. A moving pivot technique. Chem. Eng. Sci., 51, 1333–1342. DOI: 10.1016/0009-2509(95)00355-X.
Lim S.T. 1980. Hydrodynamics and mass transfer processes associated with the absorption of oxygen in liquid films flowing across a rotating disc. PhD Thesis. University of Newcastle-upon-Tyne, UK.
Majerczak K., Gierycz P., 2016. Analysis and simulation of monodispersed, nanostructured calcite obtained in a controlled multiphase process. Nanomater. Nanotechnol., 6, DOI: 10.1177/1847980416675127.
Malkaj P., Chrissanthopoulos A., Dalas E., 2004. Understanding nucleation of calcium carbonate on gallium oxide using computer simulation. J. Cryst. Growth, 264, 430–437. DOI: 10.1016/j.jcrysgro.2004.01.005.
Marchisio D.L., Vigil R.D., Fox R.O., 2003. Implementation of quadrature method of moments in CFD codes for aggregation-breakage problems. Chem. Eng. Sci., 58, 3337–3351. DOI: 10.1016/S0009-2509(03)00211-2.
Montes-Hernandez G., Renard F., Geoffroy N., Charlet L., Pironon J., 2007. Calcite precipitation from CO2–H2O– Ca(OH)2 slurry under high pressure of CO2. J. Cryst. Growth, 308, 228–236. DOI: 10.1016/j.jcrysgro.2007.08.005.
Moore S.R., 1986. Mass transfer into thin liquid films with and without chemical reaction. PhD Thesis. University of Newcastle-upon-Tyne, UK.
Mullin J.W., 2001. Crystallization. Butterworth-Heinemann, Oxford, UK.
Myerson A.S, 1999. Molecular modelling applications in crystallization. Cambridge University Press, Cambridge, UK.
Nancollas G.H., Reddy M.M., 1971. The crystallization of calcium carbonate. II. Calcite growth mechanism. J. Colloid Interface Sci., 37, 824–830. DOI: 10.1016/0021-9797(71)90363-8.
Nicmanis N., Hounslow M.J., 1998. Finite-element methods for steady-state population balance equations. AIChE J., 44, 2258–2272. DOI: 10.1002/aic.690441015.
Popescu M.-A., Isopescu R., Matei C., Fagarasan G., Plesu V., 2014. Thermal decomposition of calcium carbonate polymorphs precipitated in the presence of ammonia and alkylamines. Adv. Powder Technol., 25, 500-507. DOI: 10.1016/j.apt.2013.08.003.
Prasher C.L., 1987. Crushing and grinding process handbook. Wiley, New York, US.
Quigley D., Roger P.M., 2008. Free energy and structure of calcium carbonate nanoparticles during early stages of crystallization. J. Chem. Phys., 128, 2211011–2211014. DOI: 10.1063/1.2940322.
Ramkrishna D., 2000. Population balances. Theory and applications to particulate systems in engineering. Academic Press, San Diego, US.
Randolph A.D., Larson, M.A., 1988. Theory of particulate processes, Academic Press, New York, US.
Reddy M.M., Nancollas G.H., 1976. The crystallization of calcium carbonate: IV. The effect of magnesium, strontium and sulfate ions. J. Cryst. Growth, 35, 33–38. DOI: 10.1016/0022-0248(76)90240-2.
Rielly C.D., Marquis A.J., 2001. A particle’s eye view of crystallizer fluid mechanics. Chem. Eng. Sci., 56, 2475– 2493. DOI: 10.1016/S0009-2509(00)00457-7.
Rigopoulos S., Jones A.G., 2001. Dynamic modelling of a bubble column for particle formation via a gas-liquid reaction. Chem. Eng. Sci., 56, 6177–6183. DOI: 10.1016/S0009-2509(01)00259-7.
Rigopoulos S., Jones A.G., 2003a. Modeling of semibatch agglomerative gas–liquid precipitation of CaCO3 in a bubble column reactor. Ind. Eng. Chem. Res., 42, 6567–6575. DOI: 10.1021/ie020851a.
Rigopoulos S., Jones A.G., 2003b. Finite-element scheme for solution of the dynamic population balance. AIChE J., 49, 1127–1139. DOI: 10.1002/aic.690490507.
Sisoev G.M., Matar O.K., Lawrence C.J., 2003. Modelling of film flow over a spinning disk. J. Chem. Technol. Biotechnol., 78, 151–155. DOI: 10.1002/jctb.717.
Sisoev G.M., Matar O.K., Lawrence C.J., 2006. The flow of thin liquid films over spinning discs . Can. J. Chem. Eng., 84, 625-642. DOI: 10.1002/cjce.5450840601.
Schlomach J., Quarch K., Kind M., 2006. Investigation of precipitation of calcium carbonate at high supersaturations. Chem. Eng. Technol., 29, 215-220. DOI: 10.1002/ceat.200500390.
Schwarz M.P., Turner W.J., 1988. Applicability of the standard k-ε turbulence model to gas-stirred baths. Appl. Math. Modell., 12, 273–279. DOI: 10.1016/0307-904X(88)90034-0.
Sha, Z., Palosaari, S., 2000. Mixing and crystallization in suspensions. Chem. Eng. Sci., 55, 1797–1806. DOI: 10.1016/S0009-2509(99)00458-3.
Sohnel O., Mullin J.W., 1982. Precipitation of calcium carbonate. J. Cryst. Growth, 60, 239–250. DOI: 10.1016/0022- 0248(82)90095-1.
Spanos N., Koutsoukos P.G., 1998. Kinetics of precipitation of calcium carbonate in alkaline pH at constant supersaturation. spontaneous and seeded growth. J. Phys. Chem. B, 102, 6679–6684. DOI: 10.1021/jp981171h.
Spiegelman M., 2004. Myths and methods in modeling. LDEO, Columbia University, New York, US.
Tai C.Y., Chen P.-C., Shih S-M., 1993. Size-dependent growth and contact nucleation of calcite crystals. AIChE J., 39, 1472–1482. DOI: 10.1002/aic.690390907.
Tai C.Y., Chen P.-C., 1995. Nucleation, agglomeration and crystal morphology of calcium carbonate. AIChE J., 41, 68–77. DOI: 10.1002/aic.690410108.
Tamura K., Tsuge H., 2006. Characteristic of multistage column crystallizer for gas-liquid reactive crystallization of calcium carbonate. Chem. Eng. Sci., 61, 5818–5826. DOI: 10.1016/j.ces.2006.05.002.
Tobias J., Klein M.L., 1996. Molecular dynamics simulations of a calcium carbonate/calcium sulfonate reverse micelle. J. Phys. Chem. B, 100, 6637–6648. DOI: 10.1021/jp951260j.
Trippa G., Hetherington P., Jachuck R.J.J., 2002. Process intensification: Precipitation of calcium carbonate from the carbonation reaction of lime water using a spinning disc reactor. 15th International symposium on industrial 2002; Sorrento, Italy, 1053–1058.
Tsutsumi A., Nieh J.-Y., Fan L.-S., 1991. Role of the bubble wake in fine particle production of calcium carbonate in bubble column system. Ind. Eng. Chem. Res., 30, 2328–2333. DOI: 10.1021/ie00058a012.
Ukrainczyk M., Kontrec J., Babić-Ivancić V., Brecević L., Kralj D. 2007. Experimental design approach to calcium carbonate precipitation in a semicontinuous process. Powder Technol., 171, 192–199. DOI: 10.1016/j.powtec.2006.10.046.
Vacassy R., Lemaître J., Hofmann H., Gerlings J.H., 2000. Calcium carbonate precipitation using new segmented flow tubular reactor. AIChE J., 46, 1241–1252. DOI: 10.1002/aic.690460616.
Varma A., Morbidelli M., 1997. Mathematical methods in chemical engineering. Oxford University Press, New York, US.
Villermaux J., Falk L., 1994. A generalized mixing model for initial contacting of reactive fluids. Chem. Eng. Sci., 49, 5127–5140. DOI: 10.1016/0009-2509(94)00303-3.
Wachi S., Jones A.G., 1991. Mass transfer with chemical reaction and precipitation. Chem. Eng. Sci., 46, 1027–1033. DOI: 10.1016/0009-2509(91)85095-F.
Wan B., Ring T.A., 2006. Verification of SMOM and QMOM population balance modeling in CFD code us- ing analytical solutions for batch particulate processes. China Particuology, 4, 243–249. DOI: 10.1016/S1672- 2515(07)60268-1.
Wang T., Antonietti M., Colfen H., 2006. Calcite mesocrystals: “Morphing” crystals by a polyelectrolyte. Chem. Eur. J., 12, 5722–5730. DOI: 10.1002/chem.200501019.
Wei H.Y., Garside J., 1997. Application of CFD modelling to precipitation systems. Chem. Eng. Res. Des., 75, 219–227. DOI: 10.1205/026387697523471.
Wen Y., Xiang L., Jin Y., 2003. Synthesis of plate-like calcium carbonate via carbonation route. Mater. Lett., 57, 2565–2571. DOI: 10.1016/S0167-577X(02)01312-5.
Wojcik J., Jones A.G., 1998. Dynamics and stability of continuous MSMPR agglomerative precipitation: Numer- ical analysis of the dual particle coordinate model. Comput. Chem. Eng., 22, 535–545. DOI: 10.1016/S0098-1354(97)00239-1.
Wray J.L., Daniels F., 1957. Precipitation of calcite and aragonite. J. Am. Chem. Soc., 79, 2031–2034. DOI: 10.1021/ ja01566a001.
Wszelaka-Rylik M., Piotrowska K., Gierycz P., 2015. Simulation, aggregation and thermal analysis of nanos- tructured calcite obtained in a controlled multiphase process. J. Therm. Anal. Calorim., 119, 1323–1338. DOI: 10.1007/s10973-014-4217-1.
Wuklow M., Gerstlauer A., Nieken U., 2001. Modeling and simulation 1 of crystallization processes using parsival. Chem. Eng. Sci., 56, 2575–2588. DOI: 10.1016/S0009-2509(00)00432-2.
Go to article

Authors and Affiliations

Paweł Gierycz
1
Artur Poświata
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Batch dark fermentation of wheat straw and boiled potato wastes at volatile suspended solids (VSS) 5 g VSS/L are examined and compared. Investigations on dark fermentation of potatowastes and wheat straw were carried out at different pH and OFR (oxygen flow rate) values and inoculum pretreatment. The obtained hydrogen yield from waste potato was 70 mL/g VSS, while for hydrolysed wheat straw it amounted to 80 mL/g VSS. The optimum conditions for potato dark fermentation are acidic pH 6.0 and OFR 1.0 mL/h, while for the wheat straw, optimal conditions are pH 6.4 and OFR 4.6 mL/h. The comparison revealed a significant difference in hydrogen production due to the type of substrate, inoculum stressing and DF conditions applied.
Go to article

Bibliography

Achinas S., Li Y., Achinas V., Euverink G.J.W., 2019. Biogas potential from the anaerobic digestion of potato peels: Process performance and kinetics evaluation. Energies, 12, 2311. DOI: 10.3390/en12122311.
Aly S.S., Imai T., Hassouna M.S., Kim Nguyen D.M., Higuchi T., Kanno A., Yamamoto K., Akada R., Sekine M., 2018. Identification of factors that accelerate hydrogen production by Clostridium butyricum RAK25832 using casamino acids as a nitrogen source. Int. J. Hydrogen Energy, 43, 5300–5313. DOI: 10.1016/j.ijhydene.2017.08.171.
Bartacek J., Zabranska J., Lens P.N.L., 2007. Developments and constraints in fermentative hydrogen production. Biofuels, Bioprod. Biorefin., 1, 201–214. DOI: 10.1002/bbb.17.
Bundhoo Z.M.A., 2019. Potential of bio-hydrogen production from dark fermentation of crop residues: A review. Int. J. Hydrogen Energy, 44, 17346–17362. DOI: 10.1016/j.ijhydene.2018.11.098.
Chaganti S.R., Kim D.H., Lalman J.A., 2012. Dark fermentative hydrogen production by mixed anaerobic cultures: Effect of inoculum treatment methods on hydrogen yield. Renewable Energy, 48, 117–121. DOI: 10.1016/j.renene.2012.04.015.
Chi C.H., Chen K.W., Huang J.J., Chuang Y.C., Wu M.H., 1995. Gas composition in Clostridium septicum gas gangrene. J. Formos. Med. Assoc., 94, 757–759.
De Cicco A., Jeanty J.-C., 2017. The EU potato sector – statistics on production, prices and trade – Statistics Explained. Statistic Explained. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title= The_EU_potato_sector_-_statistics_on_production,_prices_and_trade.
Dessě P., Lakaniemi A.M., Lens P.N.L., 2017. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C. Water Res., 115, 120–129. DOI: 10.1016/j.watres.2017.02.063.
Gallipoli A., Braguglia C.M., Gianico A., Montecchio D., Pagliaccia P., 2020. Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen. J. Environ. Sci., 89, 167–179. DOI: 10.1016/j.jes.2019.10.016.
Garcia-Bernet D., Steyer J.-P., Bernet N., 2017. Traitement anaérobie des effluents industriels liquides Traitement anaérobie des effluents industriels liquides. Techniques de l’Ingénieur, Réf : J3943 v2.
García Depraect O., Muńoz R., van Lier J.B., Rene E.R., Diaz-Cruces V.F., León Becerril E., 2020. Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. Bioresour. Technol., 307, 123160. DOI: 10.1016/j.biortech.2020.123160.
Han W., Ye M., Zhu A.J., Zhao H.T., Li Y.F., 2015. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour. Technol., 191, 24–29. DOI: 10.1016/j.biortech.2015.04.120.
Hawkes F.R., Hussy I., Kyazze G., Dinsdale R., Hawkes D.L., 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy, 32, 172–184. DOI: 10.1016/j.ijhydene.2006.08.014.
Hernández C., Alamilla-Ortiz Z.L., Escalante A.E., Navarro-Díaz M., Carrillo-Reyes J., Moreno-Andrade I., Valdez- Vazquez I., 2019. Heat-shock treatment applied to inocula for H2 production decreases microbial diversities, interspecific interactions and performance using cellulose as substrate. Int. J. Hydrogen Energy, 44, 13126– 13134. DOI: 10.1016/j.ijhydene.2019.03.124.
Kumar G., Bakonyi P., Periyasamy S., Kim S.H., Nemestóthy N., Bélafi-Bakó K., 2015. Lignocellulose biohydrogen: Practical challenges and recent progress. Renewable Sustainable Energy Rev., 44, 728–737. DOI: 10.1016/j.rser. 2015.01.042.
Laurinavichene T.V., Belokopytov B.F., Laurinavichius K.S., Tekucheva D.N., Seibert M., Tsygankov A.A., 2010. Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production. Int. J. Hydrogen Energy, 35, 8536–8543. DOI: 10.1016/j.ijhydene.2010.02.063.
Leszczyński, W., 2000. Jakość ziemniaka konsumpcyjnego. Żywność, Nauka, Technologia, Jakość, Supl., 4(25), 5–27.
Li Y., Zhang Q., Deng L., Liu Z., Jiang H., Wang F., 2018. Biohydrogen production from fermentation of cotton stalk hydrolysate by Klebsiella sp. WL1316 newly isolated from wild carp (Cyprinus carpio L.) of the Tarim River basin. Appl. Microbiol. Biotechnol., 102, 4231–4242. DOI: 10.1007/s00253-018-8882-z.
Moriarty K., 2013. Feasibility study of anaerobic digestion of food waste in St. Bernard, Louisiana. A study prepared in partnership with the Environmental Protection Agency for the RE-Powering America’s Land Initiative: Siting renewable energy on potentially contaminated land and mine sites. National Renewable Energy Laboratory (NREL), Technical Report, NREL/TP-7A30-57082. DOI: 10.2172/1067946.
Nasirian N., Almassi M., Minaei S., Widmann R., 2011. Development of a method for biohydrogen production from wheat straw by dark fermentation. Int. J. Hydrogen Energy, 36, 411–420. DOI: 10.1016/j.ijhydene.2010.09.073.
Paillet F., Maron, A., Moscovi, R., Steyer J.P., Tapia-Venegas E., Bernet N., Trably E., 2019. Improvement of biohydrogen production from glycerol in micro-oxidative environment. Int. J. Hydrogen Energy, 44, 17802– 17812. DOI: 10.1016/j.ijhydene.2019.05.082.
Patel A.K., Debroy A., Sharma S., Saini R., Mathur A., Gupta R., Tuli D.K., 2015. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. Bioresour. Technol., 175, 291–297. DOI: 10.1016/j.biortech.2014.10.110.
Sekoai P.T., Ayeni A.O., Daramola M.O., 2019. Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass Valorization, 10, 1177–1189. DOI: 10.1007/s12649-017-0136-2.
Si B.C., Li J.M., Zhu Z.B., Zhang Y.H., Lu J.W., Shen R.X., Zhang C., 2016. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via twostage highrate anaerobic reactors. Biotechnol. Biofuels, 9, 254. DOI: 10.1186/s13068-016-0666-z.
Słupek E., Kucharska K., Ge˛bicki J., 2019. Alternative methods for dark fermentation course analysis. SN Appl. Sci., 1, 469. DOI: 10.1007/s42452-019-0488-2.
Sołowski G., Konkol I., Cenian A., 2019a. Perspectives of hydrogen production from corn wastes in Poland by means of dark fermentation. Ecol. Chem. Eng. S, 26, 255–263. DOI: 10.1515/eces-2019-0031.
Sołowski G., Konkol, I., Hrycak B., Czylkowski D., 2019b. Hydrogen and methane production under conditions of anaerobic digestion of key-lime and cabbage wastes. Agritech, 39(3), 243–250. DOI: 10.22146/agritech.35848.
Sołowski G., Konkol I., Cenian A., 2020a. Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. J. Cleaner Prod., 267, 121721. DOI: 10.1016/j.jclepro.2020.121721.
Sołowski G., Konkol I., Cenian A., 2020b. Methane and hydrogen production from cotton waste by dark fermentation under anaerobic and micro-aerobic conditions. Biomass Bioenergy, 138, 105576. DOI: 10.1016/j.biombioe.2020.105576.
Woodward J., Orr M., Cordray K., Greenbaum E., 2000. Enzymatic production of biohydrogen. Nature, 405, 1014–1015. DOI: 10.1038/35016633.
Go to article

Authors and Affiliations

Gaweł Sołowski
1
Izabela Konkol
1
Marwa Shalaby
2
Adam Cenian
1

  1. Institute of Fluid-Flow Machinery Polish Academy of Sciences, Physical Aspects of Ecoenergy Department, 14 Fiszera St., 80-231 Gdańsk, Poland
  2. National Research Center in Cairo, Department of Chemical Engineering and Pilot Plant, El Bijouth St., Dokki, Cairo, Egypt 12622
Download PDF Download RIS Download Bibtex

Abstract

Poly(glycerol sebacate) (PGS) is a polyester that is particularly useful for tissue engineering appli- cations. Many researchers have focused on the application and characterization of materials made from PGS. Synthesis is often superficially described, and the prepolymer is not characterized before crosslinking. Considering the different functionality of each monomer (glycerine – 3, sebacic acid – 2), materials with a branched structure can be obtained before the crosslinking process. Branched struc- tures are not desirable for elastomers. In this work, method to obtain linear PGS resins is presented. Moreover, synthesis was optimized with the use of the Design of Experiments method for minimizing the degree of branching and maximizing the molecular weight. The process was described via mathe- matical models, which allows to the association of process parameters with product properties. In this work ca. 1kDa and less than 10% branched PGS resin was produced. This resin could be used to make very flexible elastomers because branching is minimized.
Go to article

Bibliography

Denis P., Wrzecionek M., Gadomska-Gajadhur A., Sajkiewicz P., 2019. Poly(glycerol sebacate)–poly(l-lactide) nonwovens towards attractive electrospun material for tissue engineering. Polymers, 11, 2113. DOI: 10.3390/polym 11122113.
Fernandes B.S., Carlos Pinto J., Cabral-Albuquerque E.C.M., Fialho R.L., 2015. Free-radical polymerization of urea, acrylic acid, and glycerol in aqueous solutions. Polym. Eng. Sci., 55, 1219–1229. DOI: 10.1002/pen.24081.
Gadomska-Gajadhur A., Wrzecionek M., Matyszczak G., Pie˛towski P., Wie˛cław M., Ruśkowski P., 2018. Optimiza- tion of poly(glycerol sebacate) synthesis for biomedical purposes with the design of experiments. Org. Process Res. Dev., 22, 1793–1800. DOI: 10.1021/acs.oprd.8b00306.
Gao J., Crapo P.M., Wang Y., 2006. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng., 12, 917–925. DOI: 10.1089/ten.2006.12.917.
Godinho B., Gama N., Barros-Timmons A., Ferreira A., 2018. Enzymatic synthesis of poly(glycerol sebacate) pre- polymer with crude glycerol, by-product from biodiesel prodution. AIP Conference Proceedings, 1981, 020031. DOI: 10.1063/1.5045893.
Harris J.J., Lu S., Gabriele P., 2018. Commercial challenges in developing biomaterials for medical device devel- opment. Polym. Int., 67, 969–974. DOI: 10.1002/pi.5590.
Higuchi T., Kinoshita A., Takahashi K., Oda S., Ishikawa I., 1999. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. An experimental model of defect filling. J. Periodontology, 70, 1026–1031. DOI: 10.1902/jop.1999.70.9.1026.
Kafouris D., Kossivas F., Constantinides C., Nguyen N.Q., Wesdemiotis C., Patrickios C.S., 2013. Biosourced am- phiphilic degradable elastomers of poly(glycerol sebacate): synthesis and network and oligomer characterization. Macromolecules, 46, 622–630. DOI: 10.1021/ma3016882.
Kemppainen J.M., Hollister S.J., 2010. Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. J. Biomed. Mater. Res. Part A, 94A, 9–18. DOI: 10.1002/jbm.a.32653.
Kharaziha M., Nikkhah M., Shin S.-R., Annabi N., Masoumi N., Gaharwar A.K., Camci-Unal G., Khademhosseini A., 2013. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials, 34, 6355–6366. DOI: 10.1016/J.BIOMATERIALS.2013.04.045.
Kokubo S., Fujimoto R., Yokota S., Fukushima S., Nozaki K., Takahashi K., Miyata K., 2003. Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Biomaterials, 24, 1643–1651. DOI: 10.1016/S0142-9612(02)00551-3.
Kumar A., Khan A., Malhotra S., Mosurkal R., Dhawan A., Pandey M.K., Singh B.K., Kumar R., Prasad A.K., Sharma S.K., Samuelson L.A., Cholli A.L., Len C., Richards N.G.J., Kumar J., Haag R., Watterson A.C., Parmar V.S., 2016. Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem. Soc. Rev., 45, 6855–6887. DOI: 10.1039/C6CS00147E.
Landim L.B., Pinto J.C., Cabral-Albuquerque E.C.M., Cunha S., Fialho R.L., 2018. Synthesis and characterization of copolymers of urea-succinic acid-ethylene glycol and copolymers of urea-succinic acid-glycerol. Polym. Eng. Sci. 58, 1575–1582. DOI: 10.1002/pen.24746.
Larsson A., Israelsson M., Lind F., Seemann M., Thunman H., 2014. Using ilmenite to reduce the tar yield in a dual fluidized bed gasification system. Energy Fuels, 28, 2632–2644. DOI: 10.1021/ef500132p.
Li C.J., Trost B.M., 2008. Green chemistry for chemical synthesis. PNAS, 105, 13197–13202. DOI: 10.1073/pnas.0804348105.
Li Y., Cook W.D., Moorhoff C., Huang W.-C., Chen Q.-Z., 2013. Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) pre-polymer and gel. Polym. Int., 62, 534–47. DOI: 10.1002/pi.4419.
Liu G., Hinch B., Beavis A.D., 1996. Mechanisms for the transport of alpha,omega-dicarboxylates through the mitochondrial inner membrane. J. Biol. Chem., 271, 25338–25344. DOI: 10.1074/jbc.271.41.25338.
Liu L.L., Yi F.C., Cai W., 2012. Synthesis and shape memory effect of poly(glycerol-sebacate) elastomer. Adv. Mater. Res., 476–478, 2141–2144. DOI: 10.4028/www.scientific.net/AMR.476-478.2141.
Liu Q., Tian M., Ding T., Shi R., Feng Y., Zhang L., Chen D., Tian W., 2007. Preparation and characterization of a thermoplastic poly(glycerol sebacate) elastomer by two-step method. J. Appl. Polym. Sci., 103, 1412–19. DOI: 10.1002/app.24394.
Loh X.J., Abdul Karim A., Owh C., 2015, Poly(glycerol sebacate) biomaterial: synthesis and biomedical applica- tions. J. Mater. Chem. B, 3, 7641–7652. DOI: 10.1039/c5tb01048a.
Martina M., Hutmacher D.W., 2007. Biodegradable polymers applied in tissue engineering research: a review. Polym. Int., 56, 145–157. DOI: 10.1002/pi.2108.
Otera J., 1993. Transesterification. Chem. Rev., 93, 1449–1470. DOI: 10.1021/cr00020a004.
Rai R., Tallawi M., Grigore A., Boccaccini A.R., 2012. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Prog. Polym. Sci., 37, 1051–1078. DOI: 10.1016/j.progpolymsci. 2012.02.001.
Ravichandran R., Venugopal J.R., Sundarrajan S., Mukherjee S., Ramakrishna S., 2011. Poly(glycerol seba- cate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Tissue Eng. Part A, 17, 1363– 1373. DOI: 10.1089/ten.tea.2010.0441.
Ravichandran R., Venugopal J.R., Sundarrajan S., Mukherjee S., Sridhar R., Ramakrishna S., 2012. Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology, 23, 385102. DOI: 10.1088/0957-4484/23/38/385102.
Sant S., Hwang C.M., Lee S.-H., Khademhosseini A., 2011. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J. Tissue Eng. Regener. Med., 5, 283–291. DOI: 10.1002/term.313.
Saudi A., Rafienia M., Zargar Kharazi A., Salehi H., Zarrabi A., Karevan M., 2019. Design and fabrication of poly (glycerol sebacate)-based fibers for neural tissue engineering: synthesis, electrospinning, and characterization. Polym. Adv. Technol., 30, 1427–1440. DOI: 10.1002/pat.4575.
Slavko E., Taylor M.S., 2017. Catalyst-controlled polycondensation of glycerol with diacyl chlorides: linear polyesters from a trifunctional monomer. Chem. Sci., 8, 7106–7111. DOI: 10.1039/C7SC01886J.
Wang Y., Ameer G.A., Sheppard B.J., Langer R., 2002. A tough biodegradable elastomer. Nat. Biotechnol., 20, 602–606. DOI: 10.1038/nbt0602-602.
Wrzecionek M., Ruśkowski P., Gadomska-Gajadhur A., Gadomska-Gajadhur A., 2021. Mathematically described preparation process of poly(glycerol succinate) resins and elastomers—meeting science with industry. Polym. Adv. Technol., 32, 2042–2051. DOI: 10.1002/pat.5233.
Xu B., Cook W.D., Zhu C., Chen Q., 2016. Aligned core/shell electrospinning of poly(glycerol sebacate)/poly(l- lactic acid) with tuneable structural and mechanical properties. Polym. Int., 65, 423–429. DOI: 10.1002/pi.5071.
Go to article

Authors and Affiliations

Michał Wrzecionek
1
Joanna Howis
1
Paulina H. Marek
1 2
Paweł Ruśkowski
1
ORCID: ORCID
Agnieszka Gadomska-Gajadhur
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  2. University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

A series of steps taken to determine a kinetic equation that describes hydrogenation of propene on nickel catalyst is presented in this study. Mixed factorial design approach, belongs to designing of experiments methods was used to plane experiments. The investigations showed that the method applied makes possible determination of the kinetic equation in a relatively fast and cheap manner since only a few measurement points is required. The equation obtained was verified experimentally and statistically. Both tests showed satisfactory precision of anticipated values of the process rate.
Go to article

Bibliography

Aaserud C., Hilmen A.-M., Bergene E.S.E., Schanke D., Holmena A., 2004. Hydrogenation of propene on cobalt Fischer–Tropsch catalysts. Catal. Lett., 94, 171–176. DOI: 10.1023/B:CATL.0000020541.28174.c7.
Ahmadigoltapeh, S., Mehranbod, N., Halimejani, H.Z., 2015. Propylene hydrogenation through structured and con- ventional catalyst beds: Experiment and modelling. J. Nat. Gas Sci. Eng., 27, 822–830. DOI: 10.1016/j.jngse.2015.09.030.
Brandao L., Fritsch D., Madeira LM., Mendes A.M., 2004. Kinetics of propylene hydrogenation on nanostructured palladium clusters. Chem. Eng. J., 103, 89–97. DOI: 10.1016/j.cej.2004.07.008.
Carturan G., Enzo S., Ganzerla R., Lenarda M., Zanoni R., 1990. Role of solid-state structure in propene hydro- genation with nickel catalysts. J. Chem. Soc. Faraday Trans., 86, 739–746. DOI: 10.1039/ft9908600739.
Esfe M.H.,. Rsotamian H, Shabani-Samghabadi A., Arani A.A.A., 2017. Application of three-level general fac- torial design approach for thermal conductivity of MgO/ water nanofluids. Appl. Therm. Eng., 127, 1194–1199. DOI: 10.1016/j.applthermaleng.2017.07.211.
Montgomery D.C., 2017. Design and analysis of experiments. 9th ed., Wiley.
Özbay N., Yargıç A.Ş., Yarbay-Şahin R.Z., Önal E., 2013. Full factorial experimental design analysis of reactive dye removal by carbon adsorption. J. Chem., 234904. DOI: 10.1155/2013/234904.
Pachulski A., Schödel R., Claus P., 2012. Kinetics and reactor modeling of a Pd-Ag/Al2O3 catalyst during selective hydrogenation of ethyne. Appl. Catal., A, 445–446, 107–120. DOI: 10.1016/j.apcata.2012.08.018.
Schweitzer NM., Hu B., Das U., Hacksung K., Greeley J., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S., 2014. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal., 4, 1091–1098. DOI: 10.1021/cs401116p.
Sen G.A., 2016. Application of full factorial experimental design and response surface methodology for chromite beneficiation by Knelson concentrator. Minerals, 6, 5. DOI: 10.3390/min6010005.
Szukiewicz M., Chmiel-Szukiewicz E., Kaczmarski K., Szałek A., 2019. Dead zone for hydrogenation of propylene atalyst pellets. Open Chem., 17, 295–301. DOI: 10.1515/chem-2019-0037.
Go to article

Authors and Affiliations

Adrian Szałek
1
Mirosław Szukiewicz
1
Elżbieta Chmiel-Szukiewicz
1

  1. Rzeszów University of Technology, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The production of ethyl oleate, by homogenous acid esterification of oleic acid with ethanol, have discussed experimentally and via computational simulation in a plug flow reactor. An innovative simulation model has developed to predict the esterification reaction performance in an ideal plug flow reactor. The amount of H2SO4 acid catalyst, the initial molar ratio of alcohol to oleic acid, ethanol concentration, reaction temperature, and esterification time have examined their effects on ethyl oleate production and the conversion of oleic acid. Then the simulation extended to examine the esterification reaction kinetics and determine the reaction rate coefficients. The simulation results demonstrate that the increasing of H2SO4 acid, initial molar ratio of ethanol to oleic acid, ethanol concentration, and reaction temperature improved the productivity of the ethyl oleate and reduced the reactor space-time. The kinetics results illustrated that the reaction sensitivity to the temperature unchanging by using higher ethanol concentration and alcohol to oleic acid initial ratio. Lastly, the experimental yields at different conditions were slightly higher from those simulating with average values of 93.62 and 92.29%, respectively, indicating that the phenomenon of back-mixing cannot be ignored in esterification reactors, especially with a relatively high retention time within the reactor.
Go to article

Bibliography

Abbas A.S., Abbas R.N., 2013a. Kinetic study and simulation of oleic acid esterification over prepared NaY zeolite catalyst. Iraqi J. Chem. Pet. Eng. 14 (4), 35–43.
Abbas A.S., Abbas S.M., 2013b. Kinetic study and simulation of oleic acid esterification in different type of reactors. Iraqi J. Chem. Pet. Eng. 14 (2), 13–20.
Abbas A.S., Abbas S.M., 2016. Giresun Taguchi experimental design, optimization and kinetic study of biodiesel production from oleic acid, X th International Statistics Days Conference. Giresun University, Giresun, 743–754.
Abbas A.S., Albayati T.M., Alismaeel Z.T., Doyle, A.M., 2016. Kinetics and mass transfer study of oleic acid esterification over prepared nanoporous HY zeolite. Iraqi J. Chem. Pet. Eng., 17 (1), 47–60.
Abbas A.S., Hussein M.Y., Mohammed H.J., 2019. Preparation of solid catalyst suitable for biodiesel production. Plant Arch., 19 (2), 3853–3861.
Abbas A.S., Abbas R.N., 2015. Preparation and characterization of NaY zeolite for biodiesel production. Iraqi J. Chem. Pet. Eng., 16 (2), 19–29.
Alfattal A.H., Abbas A.S., 2019. Synthesized 2nd generation zeolite as an acid-catalyst for esterification reaction. Iraqi J. Chem. Pet. Eng. 20 (3), 67–73. DOI: 10.31699/IJCPE.2019.3.9.
Alismaeel Z.T., Abbas A.S., Albayati T.M., Doyle A.M., 2018. Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts. Fuel, 234, 170–176. DOI: 10.1016/j.fuel.2018.07.025.
Alnaama A.A., 2017. Synthesis and characteriazation of nanacrystalline ZSM-5 and ZSM-5/MCM-41 composite zeolite for biodiesel production. Ph.D. Thesis, University of Baghdad.
Al-Saadi A., Mathan B., He Y., 2020. Esterification and transesterification over SrO- ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production. Renew. Energy, 158, 388–399. DOI: 10.1016/j.renene.2020.05.171.
Alshahidy B.A., Abbas A.S., 2020. Preparation and modification of 13X zeolite as a heterogeneous catalyst for esterification of oleic acid. AIP Conference Proceedings, 2213, 020167. DOI: 10.1063/5.0000171.
Aranda D.A.G., Santos R.T.P., Tapanes N.C.O., Ramos A.L.D., Antunes O.A.C., 2008. Acid-catalyzed homo- geneous esterification reaction for biodiesel production from palm fatty acids. Catal. Lett. 122, 20–25. DOI: 10.1007/s10562-007-9318-z.
Beula C., Sai P.S.T., 2013. Kinetics of esterification of palmitic acid with ethanol- optimization using statistical design of experiments. Int. J. Chem. Eng. Appl. 4, 388–392. DOI: 10.7763/ijcea.2013.v4.331.
Bornscheuer U., 2018. Lipid modification by enzymes and engineered microbes. Elsevier Inc. DOI: 10.1016/c2016-0-04104-9.
Bouguerra Neji S., Trabelsi M., Frikha M.H., 2009. Esterification of fatty acids with short-chain alcohols over commercial acid clays in a semi-continuous reactor. Energies 2, 1107–1117. DOI: 10.3390/en20401107.
Chaemchuen S., Heynderickx P.M., Verpoort F., 2020. Kinetic modeling of oleic acid esterification with UiO-66: from intrinsic experimental data to kinetics via elementary reaction steps. Chem. Eng. J. 394, 124816. DOI: 10.1016/j.cej.2020.124816.
Chakraborty R., Chowdhury R.D., 2013. Fish bone derived natural hydroxyapatite-supported copper acid cat- alyst: Taguchi optimization of semibatch oleic acid esterification. Chem. Eng. J. 215–216, 491–499. DOI: 10.1016/j.cej.2012.11.064.
Chung K.H., Park B.G., 2009. Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity. J. Ind. Eng. Chem., 15, 388–392. DOI: 10.1016/j.jiec.2008.11.012.
da Silva M.J., Cardoso A.L., 2013. Heterogeneous tin catalysts applied to the esterification and transesterification reactions. J. Catal. 2013, 1–11. DOI: 10.1155/2013/510509.
Dan L., Laposata M., 1997. Ethyl palmitate and ethyl oleate are the predominant fatty acid ethyl esters in the blood after ethanol ingestion and their synthesis is differentially influenced by the extracellular concentrations of their corresponding fatty acids. Alcohol.: Clin. Exp. Res., 21, 286–292. DOI: 10.1111/j.1530-0277.1997.tb03762.x.
dos Santos R.C.M., Gurgel P.C., Pereira N.S., Breves R.A., de Matos P.R.R., Silva L.P., Sales M.J.A., Lopes R. de V.V., 2020. Ethyl esters obtained from pequi and macaúba oils by transesterification with homogeneous acid catalysis. Fuel 259, 116206. DOI: 10.1016/j.fuel.2019.116206.
Doyle A.M., Albayati T.M., Abbas A.S., Alismaeel Z.T., 2016. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renewable Energy, 97, 19–23. DOI: 10.1016/j.renene.2016.05.067.
Doyle A.M., Alismaeel Z.T., Albayati T.M., Abbas A.S., 2017. High purity FAU-type zeolite catalysts from shale rock for biodiesel production. Fuel, 199, 394–402. DOI: 10.1016/j.fuel.2017.02.098.
Froment G.F., Bischoff K.B., De Wilde J., 2011. Chemical reactor analysis and design. 3rd ed. John Wiley & Sons, Inc.
Gang L., Wenhui P., 2010. Esterifications of carboxylic acids and alcohols catalyzed by Al2(SO4)3.18H2O under solvent-free condition. Kinet. Catal. 51, 559–565. DOI: 10.1134/S0023158410040154.
Gómez-Castro F.I., Gutiérrez-Antonio C., Romero-Izquiero A.G., Morales-Rodríguez R., Segovia-Hernández J.G., 2016. Mass and energy integration for the supercritical process for biodiesel production and a bioethanol dehy- dration train. Comput. Aided Chem. Eng., 38, 487–492. DOI: 10.1016/B978-0-444-63428-3.50086-2.
Gültekin S., Kalbekov A., 2017. Effect of back mixing on the performance of tubular-flow reactors. Int. J. Dev. Res., 7 (9), 15684–15685.
Harriott P., 2002. Chemical reactor design. CRC Press, New York. DOI: 10.1201/9780203910238.
Hernandez E.M., 2011. Processing of omega-3 oils. In: Hernandez E.M., Hosokawa M. (Eds.), omega-3 oils: Applications in functional foods. Elsevier Inc., 107–128. DOI: 10.1016/B978-1-893997-82-0.50008-6.
Higham D.J., 2008. Modeling and simulating chemical reactions. SIAM Rev., 50, 347–368. DOI: 10.1137/060666457.
Karacan F., 2015. Steady-state optimization for biodiesel production in a reactive distillation column. Clean Technol. Environ. Policy, 17, 1207–1215. DOI: 10.1007/s10098-015-0964-3.
Khan A.K., 2002. Research into biodiesel kinetics and catalyst development. PhD thesis. University of Queensland.
Kiss A.A., Bildea, C.S., 2012. A review of biodiesel production by integrated reactive separation technologies. J. Chem. Technol. Biotechnol., 87, 861–879. DOI: 10.1002/jctb.3785.
Levenspiel O., 1999. Chemical reaction engineering. 3rd ed. John Wiley & Sons, Inc., New York.
Levenspiel O., Bischoff K.B., 1959. Backmixing in the design of chemical reactors. Ind. Eng. Chem., 51, 1431–1434. DOI: 10.1021/ie50600a023.
Liu R., Wang X., Zhao X., Feng P., 2008. Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon, 46, 1664–1669. DOI: 10.1016/j.carbon.2008.07.016.
Machado G.D., Pessoa F.L.P., Castier D., Aranda D.A.G, Ferreira-Pinto L., Giufrida W.M., Cabral V.F., Cardozo- Filho L., 2015. Computer simulation of biodiesel production by hydro-esterification. XX Congresso Brasileiro de Engenharia Química, 11119–11126. DOI: 10.5151/chemeng-cobeq2014-0019-27506-160049.
Majeed N.S., Saleh A.A., 2016. Synthesis and characterization of nanocrystalline micro- mesoporous ZSM-5 / MCM-41 Composite Zeolite. Iraqi J. Chem. Pet. Eng., 17 (1), 71–82.
Mann U., 2009. Principles of chemical reactor analysis and design: New tools for industrial chemical reactor operations. 2nd ed. John Wiley & Sons, Inc. DOI: 10.1002/9780470385821.
Mod R.R., Magne F.C., Sumrell G., Koos R.E., 1977. Lubricants and lubricant additives: III. Performance char- acteristics of some thioacetate, phosphorodithioate, and hexachlorocyclopentadiene derivatives of stearic acid amides and esters. JAOCS, 54, 589–591. DOI: 10.1007/BF03027643.
Oliveira C.F., Dezaneti L.M., Garcia F.A.C., de Macedo J.L., Dias J.A., Dias S.C.L., Alvim K.S.P., 2010. Ester- ification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia. Appl. Catal., A, 372, 153–161. DOI: 10.1016/j.apcata.2009.10.027.
Prates C.D., Ballotin F.C., Limborço H., Ardisson J.D., Lago R.M., Teixeira A.P. de C., 2020. Heterogeneous acid catalyst based on sulfated iron ore tailing for oleic acid esterification. Appl. Catal., A, 600, 117624. DOI: 10.1016/j.apcata.2020.117624.
Raia R.Z., da Silva L.S., Marcucci S.M.P., Arroyo P.A., 2017. Biodiesel production from Jatropha curcas L. oil by simultaneous esterification and transesterification using sulphated zirconia. Catal. Today, 289, 105–114. DOI: 10.1016/j.cattod.2016.09.013.
Refaat A.A., 2011. Biodiesel production using solid metal oxide catalysts. Int. J. Environ. Sci. Technol., 8, 203–221. DOI: 10.1007/BF03326210.
Sarkar A., Ghosh S.K., Pramanik P., 2010. Investigation of the catalytic efficiency of a new mesoporous catalyst SnO2/WO3 towards oleic acid esterification. J. Mol. Catal. A: Chem., 327, 73–79. DOI: 10.1016/j.molcata.2010.05.015.
Scragg A.H., 2009. Biofuels: Production, application and development. CABI Publishing.
Sena S.R.C., Barros Neto E.L., Pereira C.G., 2019. Evaluation of the lubrication of ethyl oleate and ethyl octanoate as gasoline additive. Braz. J. Pet. Gas, 13, 111–118. DOI: 10.5419/bjpg2019-0011.
Takagaki A., Toda M., Okamura M., Kondo J.N., Hayashi S., Domen K., Hara M., 2006. Esterification of higher fatty acids by a novel strong solid acid. Catal. Today, 116, 157–161. DOI: 10.1016/j.cattod.2006.01.037.
Tang J., Liang X., 2015. Highly efficient procedure for biodiesel synthesis using polypyrrole functionalized by sulfonic acid. Kinet. Catal., 56, 323–328. DOI: 10.1134/S002315841503009X.
Tankov I., Yankova R., 2019. DFT analysis, reaction kinetics and mechanism of esterification using pyridinium nitrate as a green catalyst. J. Mol. Liq., 277, 241–253. DOI: 10.1016/j.molliq.2018.12.087.
van Rossum G., 1995. Python tutorial. CWI, 1–65.
Vieira S.S., Magriotis Z.M., Graça I., Fernandes A., Ribeiro M.F., Lopes J.M.F.M., Coelho S.M., Santos N.A.V., Saczk A.A., 2017. Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO2−/La2O3. Catal. Today, 279, 267–273. DOI: 10.1016/j.cattod.2016.04.014.
Vieira. S.S., Magriotis Z.M., Filipa M., Graça I., Fernandes A., Manuel J., Lopes F.M., Coelho S.M., Santos Ap. N., V., Saczk Ap.A., 2015. Microporous and mesoporous materials use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous Mesoporous Mater., 201, 160–168. DOI: 10.1016/j.micromeso.2014.09.015.
Yin P., Chen L., Wang Z., Qu R., Liu X., Xu Q., Ren S., 2012. Biodiesel production from esterification of oleic acid over aminophosphonic acid resin D418. Fuel, 102, 499–505. DOI: 10.1016/j.fuel.2012.05.027.
Zhou K., Chaemchuen S., 2017. Metal-organic framework as catalyst in esterification of oleic acid for biodiesel production. Int. J. Environ. Sci. Dev., 8, 251–254. DOI: 10.18178/ijesd.2017.8.4.957.
Go to article

Authors and Affiliations

Suondos K.A. Barno
1
Sarmad A. Rashid
2
Ammar S. Abbas
2

  1. Presidency of the University of Baghdad, Baghdad, Iraq
  2. Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the research was to define the frequency prevalence of the incorporation of sphenoid sinuses’ septum / septa in the carotid canal of the adult population.
M a t e r i a l s and M e t h o d s: 296 computed tomography (CT) scans of the patients (147 females, 149 males), who did not present any pathology in the sphenoid sinuses, were evaluated in this retrospective analysis. Spiral CT scanner — Siemens Somatom Sensation 16 — was used to glean the medical images. Standard procedure applied in the option Siemens CARE Dose 4D. No contrast medium was administered. Multiplans reconstruction (MPR) tool was used in order to obtain frontal and sagittal planes from the transverse planes previously received.
R e s u l t s: Bilateral incorporation of the main septum (MS) in the carotid canal was not present in any of the patients, whereas unilateral incorporation was noticed in 21.96% of the patients (17.68% females, 26.17% males). On the right side it occurred in 11.82% of cases (10.88% females, 12.75% males), and on the left side in 10.14% of cases (6.8% females, 13.42% males). Bilateral incorporation of the additional septum (AS) was found in 8.45% of the patients (4.08% females, 12.75% males), whereas unilateral incorporation was noted in 28.37% of the patients. It was seen on the right side in 11.82% of cases (12.93% females, 10.74% males), and on the left side in 16.55% cases (15.65% females, 17.45% males). The most common variant was the incorporation of only one of the septa (either the MS or the AS) in the wall of the carotid canal unilaterally. Such situation took place in 30.07% of the patients (29.25% females, 30.87% males).
Incorporation of two septa on the same side was noticed in 4.39% of cases (4.08% females, 4.7% males), and incorporation of three septa in 0.34% of cases (0.7% males).
C o n c l u s i o n s: The anatomy of the paranasal sinuses is varied to a great extent, hence performing a CT scan is crucial before the scheduled surgery, as it may lessen the unforeseeable surgical complications, that may result from the high prevalence of variants in the sinuses.


Go to article

Bibliography

1. Jaworek-Troć J., Zarzecki M., Bonczar A., Kaythampillai L.N., Rutowicz B., Mazur M., Urbaniak J., Przybycień W., Piątek-Koziej K., Kuniewicz M., Lipski M., Kowalski W., Skrzat J., Loukas M., Walocha J.: Sphenoid bone and its sinus — anatomo-clinical review of the literature including application to FESS. Folia Med Crac. 2019; 59 (2): 45–59. doi: 10.24425/fmc.2019.128453.
2. Jaworek-Troć J., Zarzecki M., Mróz I., Troć P., Chrzan R., Zawiliński J., Walocha J., Urbanik A.: The total number of septa and antra in the sphenoid sinuses — evaluation before the FESS. Folia Med Crac. 2018; 58 (3): 67–81. doi: 10.24425/fmc.2018.125073.
3. Jaworek-Troć J., Iwanaga J., Chrzan R., Zarzecki J.J., Żmuda P., Pękala A., Tomaszewska I.M., Tubbs R.S., Zarzecki M.P.: Anatomical variations of the main septum of the sphenoidal sinus and its importance during transsphenoidal approaches to the sella turcica. Translational Research in Anatomy. 2020 Nov; 21: 100079, https://doi.org/10.1016/j.tria.2020.100079.
4. Abdullah B.J., Arasaratnam A., Kumar G., Gopala K.: The sphenoid sinuses: computed tomographic assessment of septation, relationship to the internal carotid arteries and sidewall thickness in the Malaysian population. J HK Coll Radiol. 2001; 4: 185–188.
5. Eryilmaz A., Ozeri C., Bayiz U., Samim E., Gocmen H., Akmansu H., Safak M.A., Dursun E.: Functional endoscopic sinus surgery (FESS). Turk J Med Res. 1993; 11 (5): 221–223.
6. Haetinger R.G., Navarro J.A.C., Liberti E.A.: Basilar expansion of the human sphenoidal sinu: an integrated anatomical and computerized tomography study. Eur Radiol. 2006; 16: 2092–2099.
7. Kantarci M., Karasen R.M., Alper F., Onbas O., Okur A., Karaman A.: Remarkable anatomic variantions in paranasal sinus region and their clinical importance. European Journal of Radiology. 2004; 50: 296–302.
8. Kazkayasi M., Karadeniz Y., Arikan O.K.: Anatomic variations of the sphenoid sinus on computed tomography. Rhinology. 2005; 43: 109–114.
9. Keast A., Yelavich S., Dawes P., Lyons B.: Anatomical variations of the paranasal sinuses in Polynesian and New Zealand European computerized tomography scans. Otolaryngology-Head and Neck Surgery. 2008; 139: 216–221.
10. Mafee M.F., Chow J.M., Meyers R.: Functional endoscopic sinus surgery: anatomy, CT screening, indications and complications. AJR. 1993; 160: 735–744.
11. Mutlu C., Unlu H.H., Goktan C., Tarhan S., Egrilmez M.: Radiologic anatomy of the sphenoid sinus for intranasal surgery. Rhinology. 2001; 39: 128–132.
12. Perez-Pinas I., Sabate J., Carmona A., Catalina-Herrera C.J., Jimenez-Castellanos J.: Anatomical variations in the human paranasal sinus region studied by CT. J Anat. 2000; 197: 221–227.
13. Sareen D., Agarwail A.K., Kaul J.M., Sethi A.: Study of sphenoid sinus anatomy in relation to endoscopic surgery. Int. J Morphol. 2005; 23 (3): 261–266.
14. Terra E.R., Guedes F.R., Manzi F.R., Boscolo F.N.: Pneumatization of the sphenoid sinus. Dentomaxillofacial Radiology. 2006; 35: 47–49.
15. Becker D.G.: The minimally invasive, endoscopic approach to sinus surgery. Journal of Long-Term Effects of Medical Implants. 2003; 13 (3): 207–221.
16. Bogusławska R.: Badanie zatok przynosowych metoda tomografii komputerowej dla celów chirurgii endoskopowej. Warszawa 1995.
17. Krzeski A., Osuch-Wójcikiewicz E., Szwedowicz P., Tuszyńska A.: Chirurgia endoskopowa w leczeniu guzów jam nosa i zatok przynosowych. Mag ORL. 2004; 3 (3): 79–84.
18. Kapur E., Kapidzic A., Kulenovic A., Sarajlic L., Sahinovic A., Sahinovic M.: Septation oft he sphenoid sinus and ist clinical significance. International Journal of Collaborative Research on Internal Medicine & Public Health. 2012; 4 (10): 1793–1802.
19. Fernandez-Miranda J.C., Prevedello D.M., Madhok R., Morera V., Barges-Coll J., Reineman K., Snyderman C.H., Gardner P., Carrau R., Kassam A.B.: Sphenoid septations and their relationship with internal carotid arteries: anatomical and radiological study. Laryngoscope. 2009; 119: 1893–1896.
20. Sethi D.S., Stanley R.E., Pillay P.K.: Endoscopic anatomy of the sphenoid sinus and sella turcica. The Journal of Laryngology and Otology. 1995; 109: 951–955.
21. Lupascu M., Comsa Gh.I., Zainea V.: Anatomical variations of the sphenoid sinus — a study of 200 cases. ARS Medica Tomitana. 2014; 2 (77): 57–62.
22. Bademci G., Unal B.: Surgical importance of neurovascular relationships of paranasal sinus region. Turkish Neurosurgery. 2005; 15 (2): 93–96.
23. Elwany S., Elsaeid I., Thabet H.: Endoscopic anatomy of the sphenoid sinus. The Journal of Laryngology and Otology. 1999; 113: 122–126.
24. Anusha B., Baharudin A., Philip R., Harvinder S., Mohd Shaffie B., Ramiza R.R.: Anatomical variants of surgically important landmarks in the sphenoid sinus: a radiologic study in Southeast Asian patients. Surg Radiol Anat. 2015; 37: 1182–1190.
25. Hamid O., El Fiky L., Hassan O., Kotb A., El Fiky S.: Anatomic variations of the sphenoid sinus and their impact on trans-sphenoid pituitary surgery. Skull Base. 2008; 18 (1): 9–15.
26. Stokovic N., Trkulja V., Dumic-Cule I., Cukovic-Bagic I., Lauc T., Vukicevic S., Grgurevic L.: Sphenoid sinus types, dimensions and relationship with surrounding structures. Ann Anat. 2016; 203: 69–76.
27. Tan H.M., Chong V.F.H.: CT of the paranasal sinuses: normal anatomy, variations and pathology. CME Radiology. 2001; 2 (3): 120–125.
28. Jaworek-Troć J., Walocha J.A., Chrzan R., Żmuda P., Zarzecki J.J., Pękala A., Depukat P., Kucharska E., Lipski M., Curlej-Wądrzyk A., Zarzecki M.P.: Protrusion of the carotid canal into the sphenoid sinuses: evaluation before endonasal endoscopic sinus surgery. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0086.
29. Jaworek-Troć J., Walocha J.A., Loukas M., Tubbs R.S., Iwanaga J., Zawiliński J., Brzegowy K., Zarzecki J.J., Curlej-Wądrzyk A., Kucharska E., Burdan F., Janda P., Zarzecki M.P.: Extensive pneumatisation of the sphenoid bone — anatomical investigation of the recesses of the sphenoid sinuses and their clinical importance. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0120.
Go to article

Authors and Affiliations

Joanna Jaworek-Troć
1 2
Michał Zarzecki
1
Dariusz Lusina
1
Tomasz Gładysz
3
Paweł Depukat
1
Agata Mazurek
1
Wojciech Twardokęs
4
Anna Curlej- Wądrzyk
5
Joe Iwanaga
6
Ewa Walocha
7
Robert Chrzan
2
Andrzej Urbanik
2

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Dental Surgery, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  4. Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland
  5. Department of Integrated Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  6. Department of Neurosurgery, Tulane University, New Orleans, USA
  7. Department of Clinical Nursing, Institute of Nursing and Obstetrics, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

B a c k g r o u n d: The aim of this study was to determine the effect of sesquiterpene lactone parthenolide on the cytotoxic and pro-oxidative effects of etoposide in HL-60 cells.
M e t h o d s: Cytotoxic effects were determined by incubation of HL-60 cells with various concentrations of examined compounds and combinations thereof, which were then stained with propidium iodide and analyzed using a flow cytometer. To determine the role of oxidative stress in the action of the compounds, co-incubation with N-acetyl-l-cysteine (NAC) and parthenolide and/or etoposide was used and the level of reduced glutathione (GSH) was detected.
R e s u l t s: Parthenolide significantly enhanced the cytotoxic and pro-apoptotic effects of etoposide. However, in most cases of the combinations of parthenolide and etoposide, their effect was antagonistic, as confirmed by an analysis using the CalcuSyn program. The examined compounds significantly reduced the level of GSH in HL-60 cells. Combination of etoposide at a concentration of 1.2 μM and parthenolide also significantly reduced GSH level. However, in the case of a combination of etoposide at a concentration of 2.5 μM with parthenolide, a significant increase in the level of GSH was obtained compared to compounds acting alone. This last observation seems to confirm the antagonism between the compounds tested.
C o n c l u s i o n s: Parthenolide did not limit the cytotoxic effect of etoposide in HL-60 cells even in the case of antagonistic interaction. If parthenolide does increase GSH levels in combination with etoposide in the normal hematopoietic cells, it could protect them against the pro-oxidative effects of this anti-cancer drug.
Go to article

Bibliography

1. Bell J.A., Galaznik A., Huelin R., Stokes M., Guo Y., Fram R.J., Faller D.V.: Effectiveness and safety of therapeutic regimens for elderly patients with acute myeloid leukemia: a systematic literature review. Clin Lymphoma Myeloma Leuk. 2018; 18: e303–e314.
2. Hackl H., Astanina K., Wieser R.: Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J Hematol Oncol. 2017; 20: 51.
3. Foran J.M.: Do cytogenetics affect the post-remission strategy for older patients with AML in CR1? Best Pract Res Clin Haematol. 2017; 30: 306–311.
4. Yunos N.M., Beale P., Yu J.Q., Huq F.: Synergism from the combination of oxaliplatin with selected phytochemicals in human ovarian cancer cel lines. Anticancer Res. 2011; 31: 4283–4290.
5. Shah K., Mirza S., Desai U., Jain N., Rawal R.: Synergism of curcumin and cytarabine in the down regulation of multi-drug resistance genes in acute myeloid leukemia. Anticancer Agents Med Chem. 2016; 16: 128–135.
6. Banudevi S., Swaminathan S., Maheswari K.U.: Pleiotropic role of dietary phytochemicals in cancer: emerging perspectives for combinational therapy. Nutr Cancer. 2015; 67: 1021–1048.
7. Pei S., Minhajuddin M., D’Alessandro A., Nemkov T., Stevens B.M., Adane B., Khan N., Hagen F.K., Yadav V.K., De S., Ashton J.M., Hansen K.C., Gutman J.A., Pollyea D.A., Crooks P.A., Smith C., Jordan C.T.: Rational design of a parthenolide-based drug regimen that selectively eradicates acute myelogenous leukemia stem cells. J Biol Chem. 2016; 291: 21984–22000.
8. Guzman M.L., Rossi R.M., Karnischky L., Li X., Peterson D.R., Howard D.S., Jordan C.T.: The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005; 105: 4163–4169.
9. Papiez M.A., Baran J., Bukowska-Straková K., Wiczkowski W.: Antileukemic action of (-)-epicatechin in the spleen of rats with acute myeloid leukemia. Food Chem Toxicol. 2010; 48: 3391–3397.
10. Papież M.A.: The influence of curcumin and (-)-epicatechin on the genotoxicity and myelosuppression induced by etoposide in bone marrow cells of male rats. Drug Chem Toxicol. 2013; 36: 93–101.
11. Siveen K.S., Uddin S., Mohammad R.M.: Targeting acute myeloid leukemia stem cel signaling by natural products. Mol Cancer. 2017; 16: 1–12.
12. Curry E.A., Murry D.J., Yoder C., Fife K., Armstrong V., Nakshatri H., O’Connell M., Sweeney C.J.: Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Invest New Drugs. 2004; 22: 299–305.
13. Knight D.W.: Feverfew: chemistry and biological activity. Nat Prod Rep. 1995; 12: 271–276.
14. Ordóñez P.E., Sharma K.K., Bystrom L.M., Alas M.A., Enriquez R.G., Malagón O., Jones D.E., Guzman M.L., Compadre C.M.: Dehydroleucodine, a Sesquiterpene Lactone from Gynoxys verrucosa, Demonstrates Cytotoxic Activity against Human Leukemia Cells. J Nat Prod. 2016; 79: 691–696.
15. Merfort I.: Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets. 2011; 12: 1560–1573.
16. Li C., Jones A.X., Lei X.: Natural product reports synthesis and mode of action of oligomeric sesquiterpene lactones. Nat Prod Rep. 2015; 1–10.
17. Pei S., Minhajuddin M., Callahan K.P., Balys M., Ashton J.M., Neering S.J., Lagadinou E.D., Corbett C., Ye H., Liesveld J.L., O’Dwyer K.M., Li Z., Shi L., Greninger P., Settleman J., Benes C., Hagen F.K., Munger J., Crooks P.A., Becker M.W., Jordan C.T.: Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013; 288: 33542–33558.
18. Klein K., Kaspers G., Harrison C.J., Beverloo H.B., Reedijk A., Bongers M., Cloos J., Pession A., Reinhardt D., Zimmerman M., Creutzig U., Dworzak M., Alonzo T., Johnston D., Hirsch B., Zapotocky M., De Moerloose B., Fynn A., Lee V., Taga T., Tawa A., Auvrignon A., Zeller B., Forestier E., Salgado C., Balwierz W., Popa A., Rubnitz J., Raimondi S., Gibson B.: Clinical impact of additional cytogenetic aberrations, ckit and ras mutations, and treatment elements in pediatric t(8;21)-aml: results from an international retrospective study by the international Berlin–Frankfurt–Münster study group. J Clin Oncol. 2015; 20: 4247–4258.
19. Burnett A.K.: New induction and postinduction strategies in acute myeloid leukemia. Curr Opin Hematol. 2012; 19: 76–81.
20. Kagan V.E., Yalowich J.C., Borisenko G.G., Tyurina Y.Y., Tyurin V.A., Thampatty P., Fabisiak J.P.: Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach. Mol Pharmacol. 1999; 56: 494–506.
21. Patel N.M., Nozaki S., Shortle N.H., Bhat-Nakshatri P., Newton T.R., Rice S., Gelfanov V., Boswell S.H., Goulet R.J., Sledge G.W., Nakshatri H.: Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by Ikappa-B alpha super-repressor and parthenolide. Oncogene. 2000; 19: 4159–4169.
22. deGraffenried L.A., Chandrasekar B., Friedrichs W.E., Donzis E., Silva J., Hidalgo M., Freeman J.W., Weiss G.R.: NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol. 2004; 15: 885–890.
23. Tietze F.: Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Ann Biochem. 1969; 27: 502–522.
24. Papież M.A., Krzyściak W., Szade K., Bukowska-Straková K., Kozakowska M., Hajduk K., Bystrowska B., Dulak J., Jozkowicz A.: Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species. Drug Des Devel Ther. 2016; 10: 557–570.
25. Wurthwein G., Krumpelmann S., Tillmann B., Real E., Schulze-Westhoff P., Jurgens H., Boos J.: Population pharmacokinetic approach to compare oral and i.v. administration of etoposide. Anticancer Drugs. 1999; 10: 807–814.
26. Kim Y.R., Eom J.I., Kim S.J., Jeung H.K., Cheong J.W., Kim J.S., Min Y.H.: Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. JPET. 2010; 335: 389–400.
27. Vlasova I.I., Feng W., Goff J.P., Giorgianni A., Do D., Gollin S.M., Lewis D.W., Kagan V.E., Yalowich J.C.: Myeloperoxidase-dependent oxidation of etoposide in human myeloid progenitor CD34+ cells. Mol Pharmacol. 2011; 79: 448–479.
28. Seo K.H., Ko H.M., Han A., Kim H.A., Choi J.H., Park S.J., Kim K.J., Lee H.K., Im S.Y.: Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kb activation. Cancer Res. 2006; 66: 4681–4686.
29. Teufelhofer O., Weiss R.M., Parzefall W., Schulte-Hermann R., Micksche M., Berger W., Elbling L.: Promyelocytic HL60 cells express NADPH oxidase and are exellent targets in a rapid spectrophotometric microplate assay for extracellular superoxide. Toxicol Sci. 2003; 76: 376–383.
30. Skalska J., Brookes P.S., Nadtochiy S.M., Hilchey S.P., Jordan C.T., Guzman M.L., Maggirwar S.B., Briehl M.M., Bernstein S.H.: Modulation of cell surface protein free thiols: a potential novel mechanism of action of the sesquiterpene lactone parthenolide. PLoS One. 2009; 2: e8115.
Go to article

Authors and Affiliations

Monika A. Papież
1
Oliwia Siodłak
1
Wirginia Krzyściak
2

  1. Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Medical Diagnostic, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article summarizes technical aspects of preparing printable 3D anatomical models created from radiological data (CT, MRI) and discusses their usefulness in surgery of the human skull. Interdisciplinary approach to the capabilities of the 3D printers, and the materials used for manufacturing 3D objects oriented on replicating anatomical structures has created new possibilities for simulating and planning surgical procedures in clinical practice settings.
Go to article

Bibliography

1. Ameil M., Delattre J.F., Cordobes B., Flament J.B.: Computerized reconstruction of an anatomical structure based on digitized sections. Anat Clin. 1984; 5 (4): 261–264. doi: 10.1007/BF01798749.
2. Vannier M.W., Marsh J.L., Warren J.O.: Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation. Radiology. 1984; 150 (1): 179–184. doi: 10.1148/radiology.150.1.6689758.
3. Groth C., Kravitz N.D., Jones P.E, Graham J.W., Redmond W.R.: Three-dimensional printing technology. J Clin Orthod. 2014; 48 (8): 475–485. PMID: 25226040.
4. Onuh S.O., Yusuf Y.Y.: Rapid prototyping technology: applications and benefits for rapid product development. J Intell Manuf. 1999; 10 (3–4): 301–311. doi: 10.1023/ A:1008956126775.
5. Anderson J.R., Thompson W.L., Alkattan A.K, Diaz O., Klucznik R., Zhang Y.J., Britz G.W., Grossman R.G., Karmonik C.: Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J Neurointerv Surg. 2016; 8: 517–520. doi: 10.1136/neurintsurg-2015-011686.
6. Anderl H., Zur Nedden D., Mühlbauer W., Twerdy K., Zanon E., Wicke K., Knapp R.: CT-guided stereolithography as a new tool in craniofacial surgery. Br J Plastic Surg. 1994; 47 (1): 60–64. doi: 10.1016/0007-1226(94)90121-x.
7. Eltorai A.E., Nguyen E., Daniels A.H.: Three-dimensional printing in orthopedic surgery. Orthopedics. 2015; 38 (11): 684–687. doi : 10.3928/01477447-20151016-05.
8. Hoch E., Tovar G.E., Borchers K.: Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg. 2014; 46 (5): 767– 778. doi: 10.1093/ejcts/ezu242.
9. Kamali P., Dean D., Skoracki R., Koolen P.G., Paul M.A., Ibrahim A.M., Lin S.J.: The current role of three-dimensional printing in plastic surgery. Plast Reconstr Surg. 2016; 137 (3): 1045–1055. doi: 10.1097/01.prs.0000479977.37428.8e.
10. VanKoevering K.K., Hollister S.J., Green G.E.: Advances in 3-dimensional printing in otolaryngology: a review. JAMA Otolaryngol Head Neck Surg. 2017; 143 (2): 178– 183. doi: 10.1001/jamaoto.2016.3002.
11. Pham D.L., Xu C., Prince J.L.: Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000; 2 (1): 315–337. doi: 10.1146/annurev.bioeng.2.1.315.
12. Sharma N., Aggarwal L.M.: Automated medical image segmentation techniques. J Med Phys. 2010; 35 (1): 3–14. doi: 10.4103/0971-6203.58777.
13. Withey D.J., Koles Z.J.: A review of medical image segmentation: methods and available software. Int J Bioelectromagn. 2008; 10 (3): 125–148.
14. Pal N.R., Pal S.K.: A review on image segmentation techniques. Patt Rec. 1993; 26 (9): 1277–1294. doi: 10.1016/0031-3203(93)90135-J.
15. Sahoo P.K., Soltani S.A. Wong A.K.C.: A survey of thresholding techniques. Comput Vis Graph Im Proc. 1988; 41 (2): 233–260. doi: 10.1016/0734-189X(88)90022-9.
16. Winder J., Bibb R.: Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2005; 63 (7): 1006–1015. doi: 10.1016/j.joms.2005.03.016.
17. Fleiter T., Hoffmann R., Niemeier R., Claussen C.D.: Preoperative planning and follow-up with spiral CT and stereolithographic models in craniofacial surgery. In Advances in CT III. Springer, Berlin, Heidelberg 1994; 149–156.
18. Mankovich N.J., Cheeseman A.M., Stoker N.G.: The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging. 1990; 3 (3): 200–203. doi: 10.1007/BF03167610.
19. Stoker G.N., Mankovich N.J., Valentino D.: Stereolithographic models for surgical planning: preliminary report. J Oral Maxillofac Surg. 1992; 50: 466–471. doi: 10.1016/ s0278-2391(10)80317-9.
20. Eppley B.L., Sadove A.M.: Computer-generated patient models for reconstruction of cranial and facial deformities. J Craniofac Surg. 1998; 9 (6): 548–556. doi: 10.1097/ 00001665-199811000-00011.
21. Müller A., Krishnan K.G., Uhl E., Mast G.: The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003; 14 (6): 899–914. doi: 10.1097/00001665-200311000-00014.
22. Singare S., Yaxiong L., Dichen L., Bingheng L., Sanhu H., Gang L.: Fabrication of customised maxillo-facial prosthesis using computer-aided design and rapid prototyping techniques. Rapid Prototyp J. 2006; 12 (4): 206–213. doi: 10.1108/ 13552540610682714.
23. Kermer C., Lindner A., Friede I., Wagner A., Millesi W.: Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J Craniomaxillofac Surg. 1998; 26 (3): 136–139. doi: 10.1016/s1010-5182(98) 80002-4.
24. Kernan B.T., Wimsatt J.A.: Use of a stereolithography model for accurate, preoperative adaptation of a reconstruction plate. J Oral Maxillofac Surg. 2000; 58 (3): 349– 351. doi: 10.1016/s0278-2391(00)90071-5.
25. Ehrenberg R.: Plastic implant replaces three-quarters of man’s skull. Science News. March 11, 2013.
26. Sunderland I.R., Edwards G., Mainprize J., Antonyshyn O.: A technique for intraoperative creation of patient-specific titanium mesh implants. Plast Surg (Oakv). 2015; 23 (2): 95–99. doi: 10.4172/plastic-surgery.1000909.
27. Bell R.B., Markiewicz M.R.: Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg. 2009; 67 (12): 2559–2570. doi: 10.1016/j.joms.2009.07.098.
28. D’Urso P.S., Atkinson R.L., Lanigan M.W., Earwaker W.J., Bruce I.J., Holmes A., Barker T.M., Effeney D.J., Thompson R.G.: Stereolithographic (SL) biomodelling in craniofacial surgery. Br J Plast Surg. 1998; 51 (7): 522–530. doi: 10.1054/ bjps.1998.0026.
29. D’Urso P.S., Redmond M.J.: A method for the resection of cranial tumours and skull reconstruction. Br J Neurosurg. 2000; 14 (6): 555–559. doi: 10.1080/ 02688690020005581.
30. Erickson D.M., Chance D., Schmitt S., Mathis J.: An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg. 1999; 57 (9): 1040–1043.
31. Cui J., Chen L., Guan X., Ye L., Wang H., Liu L.: Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J Oral Maxillofac Surg. 2014; 72 (6): 1138-e1-14. doi: 10.1016/j.joms.2014.02.023.
32. Frühwald J., Schicho K.A., Figl M., Benesch T., Watzinger F., Kainberger F.: Accuracy of craniofacial measurements: computed tomography and three-dimensional computed tomography compared with stereolithographic models. J Craniofac Surg. 2008; 19 (1): 22–26. doi: 10.1097/scs.0b013e318052ff1a.
33. Choi J.Y., Choi J.H., Kim N.K., Kim Y., Lee J.K., Kim M.K., Lee J.H., Kim M.J.: Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg. 2002; 31.(1): 23–32. doi: 10.1054/ijom.2000.0135.
34. Barker T.M., Earwaker W.J., Lisle D.A.: Accuracy of stereolithographic models of human anatomy. Australas Radiol. 1994; 38 (2): 106–111. doi: 10.1111/j.1440-1673.1994.tb00146.x.
35. Chang P.S., Parker T.H., Patrick C.W., Miller M.J.: The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg. 2003; 14 (2): 164–170. doi: 10.1097/00001665-200303000-00006.
36. Nizam A., Gopal R., Naing N.L., Hakim A.B., Samsudin A.R.: Dimensional accuracy of the skull models produced by rapid prototyping technology using stereolithography apparatus. Arch Orofac Sci. 2006; 1: 60–66.
37. Chia H.N., Wu B.M.: Recent advances in 3D printing of biomaterials. J Biol Eng. 2015; 9 (1): 4. doi: 10.1186/s13036-015-0001-4.
38. Hsieh T.Y., Dedhia R., Cervenka B., Tollefson T.T.: 3D Printing: current use in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg. 2017; 25 (4): 291–299. doi: 10.1097/MOO.0000000000000373.
39. Jakus A.E., Rutz A.L., Shah R.N.: Advancing the field of 3D biomaterial printing. Biomed Mater. 2016; 11 (1): 014102. doi: 10.1088/1748-6041/11/1/014102.
40. Poukens J., Haex J., Riediger D.: The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg. 2003; 8 (3): 146–154. doi: 10.3109/10929080309146049.
41. Wang Y., Ni M., Tang P.F., Li G.: Novel application of HA-TCP biomaterials in distraction osteogenesis shortened the lengthening time and promoted bone consolidation. J Orthop Res. 2009; 27 (4): 477–482. doi: 10.1002/jor.20782.
42. Ballard D.H., Trace A.P., Ali S., Hodgdon T., Zygmont M.E., DeBenedectis C.M., Smith S.E., Richardson M.L., Patel M.J., Decker S.J., Lenchik L.: Clinical Applications of 3D Printing: Primer for Radiologists. Acad Radiol. 2018; 25 (1): 52–65. doi: 10.1016/j.acra.2017.08.004.
43. Chepelev L., Giannopoulos A., Tang A., Mitsouras D., Rybicki F.J.: Medical 3D printing: methods to standardize terminology and report trends. 3D Print Med. 2017; 3 (1): 4. doi: 10.1186/s41205-017-0012-5.
44. Bauermeister A.J., Zuriarrain A., Newman M.I.: Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016; 77 (5): 569– 576. doi: 10.1097/SAP.0000000000000671.
45. Pham D.L., Xu C., Prince J.L.: Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000; 2 (1): 315–337. doi: 10.1146/annurev.bioeng.2.1.315.
46. Waran V., Devaraj P., Hari Chandran T., Muthusamy K.A., Rathinam A.K., Balakrishnan Y.K., Tung T.S., Raman R., Rahman Z.A.: Three-dimensional anatomical accuracy of cranial models created by rapid prototyping techniques validated using a neuronavigation station. J Clin Neurosci. 2012; 19 (4): 574–577. doi: 10.1016/j.jocn.2011.07.031.
Go to article

Authors and Affiliations

Janusz Skrzat
1

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

A i m s: Gestational diabetes mellitus (GDM) is an emerging worldwide problem. Changes in clinical characteristics of women affected by GDM in a long-term perspective are still not properly investigated. We aimed to examine such changes over a decade in a retrospective single-center analysis.
M e t h o d s: The medical documentation from Department of Metabolic Diseases, Krakow, Poland was analyzed. We included 633 women consecutively diagnosed with GDM in one of three time intervals: 2007–2008 (N = 157), 2012–2013 (N = 272), 2016–2017 (N = 234). Statistical analyses were performed.
R e s u l t s: Comparison of the three groups identified differences in the mean age of women at the GDM diagnosis (30.7 ± 5.0 years vs. 31.2 ± 4.7 vs. 32.5 ± 4.7, respectively, starting from the earliest 2007–2008 group), pregnancy week at GDM diagnosis (28.0 ± 5.3 wks. vs. 25.9 ± 4.9 vs. 23.4 ± 6.8), the proportion of women diagnosed before the 24th week of pregnancy (12.8% vs. 16.5% vs. 31.3%), and gestational weight gain (12.4 ± 5.0 kg vs. 10.4 ± 5.2 vs. 10.0 ± 5.7); (p = 0.001 or less for all comparisons). We also found differences for glucose values on fasting and at 2 hours with the highest (0 min) and lowest level (120 min) in the 2016–2017, respectively. Finally, a borderline difference for the weight, but not for BMI, was found (64.1 ± 14.1 kg vs. 66.2 ± 13.1 vs. 67.8 ± 15.6; p = 0.04). Differences were also identified in the post hoc analysis between cohorts.
C o n c l u s i o n: This retrospective analysis illustrates changes in characteristics of women with GDM occurring over the period of decade in Poland. They likely result from both epidemiological trends and modifications of the WHO criteria for the GDM diagnosis.
Go to article

Bibliography

1. McIntyre H.D., Catalano P., Zhang C., Desoye G., Mathiesen E.R., Damm P.: Gestational diabetes mellitus. Nat Rev Dis Primers. 2019; 5: 47. JAMA 1967; 200: 1129–1131.
2. Lowe L.P., Metzger B.E., Dyer A.R., et al.: Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations of maternal A1C and glucose with pregnancy outcomes. Diabetes Care. 2012; 35: 574–580.
3. Gortazar L., Flores-Le Roux J.A., Benaiges D., et al.: Trends in prevalence of gestational diabetes and perinatal outcomes in Catalonia, Spain, 2006 to 2015: the Diagestcat Study. Diabetes Metab Res Rev. 2019; 35: e3151.
4. Cade T.J., Polyakov A., Brennecke S.P.: Implications of the introduction of new criteria for the diagnosis of gestational diabetes: a health outcome and cost of care analysis. BMJ Open. 2019; 9: e023293.
5. Mack L.R., Tomich P.G.: Gestational Diabetes: Diagnosis, Classification and Clinical Care. Obstet. Gynecol. Clin. North Am. 2017; 44: 207–217.
6. Egan A.M., Vellinga A., Harreiter J., et al.: Epidemiology of gestational diabetes mellitus according to IADPSG/WHO 2013 criteria among obese pregnant women in Europe. Diabetologia. 2017; 60: 1913– 1921.
7. Lean S.C., Derricott H., Jones R.L., et al.: Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta-analysis. PLoS One. 2017; 12: e0186287.
8. Chiefari E., Arcidiacono B., Foti D., et al.: Gestational diabetes mellitus: an updated overview. J Endocrinol Invest. 2017; 40:.899–909.
9. Skupień J., Cyganek K., Małecki M.T.: Diabetic pregnancy: an overview of current guidelines and clinical practice. Curr Opin Obstet Gynecol. 2014; 26: 431–417.
10. Behboudi-Gandevani S., Amiri M., Bidhendi Yarandi R., et al.: The impact of diagnostic criteria for gestational diabetes on its prevalence: a systematic review and meta-analysis. Diabetol Metab Syndr. 2019; 11: 11.
11. HAPO Study Cooperative Research Group, Metzger B.E., Lowe L.P., et al.: Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008; 358: 1991–2002.
12. World Health Organization: Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization guideline. Diabetes Res Clin Pract. 2014; 103: 341–363.
13. 2020 Guidelines on the management of diabetic patients. A position of Diabetes Poland. Clinical Diabetology, supplement A, 2014.
14. Rybińska A.: Motherhood after the age of 35 in Poland. Studia Demogr. 2014; 1: 7–15.
15. Molina-García L., Hidalgo-Ruiz M., Cocera-Ruíz E.M., et al.: The delay of motherhood: Reasons, determinants, time used to achieve pregnancy, and maternal anxiety level. PLoS One. 2019; 14: e0227063.
16. Matthews T.J., Hamilton B.E.: First births to older women continue to rise. NCHS Data Brief. 2014; 152: 1–8.
17. Hammarberg K., Clarke V.E.: Reasons for delaying childbearing — a survey of women aged over 35 years seeking assisted reproductive technology. Aust Fam Physician. 2005; 34 (3): 187–206.
18. Kim M., Park J., Kim S.H., et al.: The trends and risk factors to predict adverse outcomes in gestational diabetes mellitus: a 10-year experience from 2006 to 2015 in a single tertiary center. Obstet Gynecol Sci. 2018; 61: 309–318.
19. Wender-Ożegowska E., Bomba-Opoń D., Brązert J., et al.: The Polish Society of Gynaecologists and Obstetricians standards for the management of patients with diabetes. Ginekologia i Perinatologia Praktyczna. 2017; 2: 215–229.
20. Egan A.M., Dunne F.P.: Epidemiology of Gestational and Pregestational Diabetes Mellitus. In: Lapolla A., Metzger B.E. (eds.): Gestational Diabetes. A Decade after the HAPO Study. Front Diabetes. Basel, Karger, 2020; 28: 1–10.
21. Egan A.M., Dennedy M.C., Al-Ramli W., et al.: ATLANTIC-DIP: excessive gestational weight gain and pregnancy outcomes in women with gestational or pregestational diabetes mellitus. J Clin Endocrinol Metab. 2014; 99: 212–219.
22. Ferreira L.A.P., Piccinato C.A., Cordioli E., et al.: Pregestational body mass index, weight gain during pregnancy and perinatal outcome: a retrospective descriptive study. Einstein (Sao Paulo). 2019; 18: eAO4851.
23. Brown J., Kapurubandara S., McGee T.M.: Confounding effect of ethnic diversity on booking-in body mass index and prevalence of gestational diabetes and hypertensive disorders in pregnant women in western Sydney 1997–2016. Aust N Z J Obstet Gynaecol. 2020; 60: 369–375.
24. Lavery J.A., Friedman A.M., Keyes K.M., et al.: Gestational diabetes in the United States: temporal changes in prevalence rates between 1979 and 2010. BJOG. 2017; 124: 804–813.
25. Fitzpatrick K.E., Tuffnell D., Kurinczuk J.J., et al.: Pregnancy at very advanced maternal age: a UK population-based cohort study. BJOG. 2017; 124: 1097–1106.
Go to article

Authors and Affiliations

Magdalena Wilk
1 2
Katarzyna Cyganek
1 2
Bartłomiej Matejko
1 2
Sabina Krzyżowska
1 2
Izabela Lasoń
1 2
Barbara Katra
1 2
Joanna Zięba-Parkitny
2
Przemysław Witek
1 2
Maciej T. Małecki
1 2

  1. Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
  2. University Hospital, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

O b j e c t i v e s: Periapical inflammation is one of the most common pathologies within the jaws, leading to the destruction of periodontal ligaments, bone resorption and the formation of periapical granulomas or radicular cysts. The final diagnosis can be made only on the basis of histopathological examination. The aim of the study was to assess the conformity between clinical and histopathological diagnosis of inflammatory periapical lesions treated with apicoectomy.
M a t e r i a l s a n d M e t h o d s: The case histories of 52 patients subjected to surgical treatment at the Clinic of Conservative Dentistry with Endodontics between 2008 and 2018 were analyzed. Demographic data (age, gender), clinical (radiological) diagnosis, and data on the presence of sinus tracts and causal tooth were obtained from patients’ records. R e s u l t s: In the light of clinical and radiological examination, 32 (61.5%) periapical granulomas, 18 (34.6%) radicular cysts and 2 (3.9%) periapical scars were diagnosed, whereas the result of histopathological examination revealed granuloma in 34 (65.4%) cases and in 18 (34.6%) — radicular cyst. For clinical diagnosis of granuloma, the result coincided with the result of the histopathological examination in 28 cases, and in the case of cysts in 14. The analysis showed a significant relationship between the clinical and histopathological diagnoses (p <0.05).
C o n c l u s i o n s: The study emphasizes the importance of histopathological assessment for the proper diagnosis of periapical lesions.
C l i n i c a l R e l e v a n c e: The article emphasizes the high importance of histopathological examination for the correct diagnosis of chronic inflammatory periapical lesions.
Go to article

Bibliography

1. Nair P.N.R.: Pathogenesis of apical periodontitis and the cause of endododontic failures. Crit Rev Oral Biol Med. 2004; 15 (6): 348–381.
2. Dominiak M., Łysiak K., Znamirowska A., Szczepański W., Hałoń A.: Porównanie zgodności oceny klinicznej, histopatologicznej oraz radiologicznej przewlekłych zmian okołowierzchołkowych. Dent Med Probl. 2006; 43 (4): 504–510.
3. White E.: Podstawy radiodiagnostyki stomatologicznej. Wydawnictwo Medyczne Sanmedica, Warszawa, 1994; pp. 242–244.
4. Tay J.Y.Y., Bay B.H., Yeo J.F., Harris M., Meghji S., Dheen S.T.: Identification of RANKL in osteolytic lesions of the facial skeleton. J Dent Res. 2004; 83 (4): 349–353.
5. Ratajczak M., Sowa W., Walter A.: Molekularne podstawy powstawania zębopochodnej torbieli zapalnej — przegląd piśmiennictwa. Dent Med Probl. 2010; 47 (4): 496–501.
6. Garcia C.C., Sempere F.V., Diago A.P., Bowen E.M.: The post-endodontic periapical lesion: Histologic and etiopathogenic aspects. Med Oral Patol Oral Cir Bucal. 2007; 12 (8): 585–590.
7. Nair P.N.R., Sundqvist G., Sjögren U.: Experimental evidence supports the abscess theory of development of radicular cysts. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2008; 106 (2): 294–303.
8. Von Arx T.: Apical surgery: A review of current techniques and outcome. Saudi Dent J. 2011; 23 (1): 9–15.
9. Diegues L.L., Robazza C.R.C., Hanemann J.A.C., Pereira A.A.C., Silva C.O.: Correlation between clinical and histopathological diagnoses in periapical inflammatory lesions. J Investig Clin Dent. 2011; 2 (3): 184–186.
10. Love R.M., Firth N.: Histopathological profile of surgically removed persistent periapical radiolucent lesions of endodontic origin. Int Endod J. 2009; 42 (3): 198–202.
11. Akinyamoju A.O., Gbadebo S.O., Adeyemi B.F.: Periapical lesions of the jaws: a review of 104 cases in ibadan. Ann Ibd Pg Med. 2014; 12 (2): 115–119.
12. Lin H.P., Chen H.M., Yu C.H., Kuo R.C., Kuo Y.S., Wang Y.P.: Clinicopathological study of 252 jaw bone periapical lesions from a private pathology laboratory. J Formos Med Assoc. 2010; 109 (11): 810–818.
13. Carrillo C., Penarrocha M., Ortega B., Martí E., Bagán J.V., Vera F.: Correlation of Radiographic Size and the Presence of Radiopaque Lamina With Histological Findings in 70 Periapical Lesions. J Oral Maxillofac Surg. 2008; 66 (8): 1600–1605.
14. Obuchowicz R., Nurzyńska K., Obuchowicz B., Urbanik A., Piórkowski A.: Use of Texture Feature Maps for the Refinement of Information Derived from Digital Intraoral Radiographs of Lytic and Sclerotic Lesions. Appl Sci. 2019; 9 (15): 2968.
Go to article

Authors and Affiliations

Paweł Myciński
1
Katarzyna Dobroś
1
Tomasz Kaczmarzyk
2
Joanna Zarzecka
1

  1. Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Oral Surgery, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Intensive hypoglycemic treatment is the strongest preventive strategy against the development of microvascular complications of type 2 diabetes (T2DM), including diabetic nephropathy. However, some antidiabetic drugs, i.e. sodium-glucose cotransporter-2 inhibitors (SGLT-2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA) have an additional renoprotective effect beyond glucose control by itself. Similar, both SGLT-2i and GLP1-RA have been demonstrated to decrease the risk of adverse cardiovascular (CV) events in CV outcome trials. Nevertheless, there are relevant differences in CV and renal effects of SGLT-2i and GLP1-RA. First, SGLT2i reduced the incidence and progression of albuminuria and prevented loss of kidney function, while predominant renal benefits of GLP1-RA were driven by albuminuria outcomes. Second, the risk of heart failure (HF) hospitalizations decreased on SGLT2i but not on GLP1-RA, which gives priority to SGLT2i in T2DM and HF, especially with depressed EF. Third, either GLP1-RA (reducing predominantly atherosclerosis-dependent events) or SGLT-2i, should be used in T2DM and established atherosclerotic CV disease (ASCVD) or other indicators of high CV risk. In this review, we have briefly compared clinical practice guidelines of the American Diabetes Association (2020 and 2021 versions), Polish Diabetes Association (2020) and the European Society of Cardiology/European Association for the Study of Diabetes (2019), with a focus on the choice between SGLT-2i and GLP1-RA in patients with diabetic kidney disease.
Go to article

Bibliography

1. American Diabetes Association: Microvascular complications and foot care: Standards of Medical Care in Diabetes-2021. Standards of Medical Care in Diabetes–2020. Diabetes Care. 2020; 43 (Suppl 1): S135–S151.
2. American Diabetes Association: Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43 (Suppl 1): S98–S110.
3. American Diabetes Association: Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021; 44 (Suppl 1): S111–S124.
4. Williams D.M., Nawaz A., Evans M.: Renal outcomes in type 2 diabetes: A review of cardiovascular and renal outcome trials. Diabetes Ther. 2020; 11: 369–386.
5. Heerspink H.J.L., Stefánsson, B.V., Correa-Rotter, et al.: Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383: 1436–1446.
6. Jhund P.S., Solomon S.D., Docherty K.F., et al.: Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: Results of DAPA-HF. Circulation 2020 Oct 12; doi: 10.1161/CIRCULATIONAHA.120.050391.
7. Packer M., Anker S.D., Butler J., et al.: Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383: 1413–1424.
8. American Diabetes Association: Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019; 42 (Suppl 1): S90–S102.
9. Diabetes Poland (Polish Diabetes Association): 2020 Guidelines on the management of diabetic patients: A position of Diabetes Poland. Clin Diabetol. 2020; 9: 1–101.
10. Cosentino F., Grant P.J., Aboyans V., et al.: 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41: 255–323.
Go to article

Authors and Affiliations

Ewa Wieczorek-Surdacka
1
Andrzej Surdacki
2
Jolanta Świerszcz
3
Bernadeta Chyrchel
4

  1. Chair and Department of Nephrology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  2. Second Department of Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Medical Education, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  4. Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The SARS-CoV-2 pandemic contributed to the implementation of changes in the methodology of conducting many courses at medical universities. Achieving learning outcomes was associated with self-discipline and an increased portion of students’ independent work. The aim of the study is to analyze the adaptation of teaching methods to the requirements of the COVID-19 pandemic at the Department of Medical Education of Jagiellonian University Medical College. The university authorities, instructors and students made every effort not to neglect their education. The Microsoft Teams platform allowed for the efficient organization of remote classes. Lectures, activities based on dialogue, brainstorming and role- -playing were conducted via the Internet. Presentations and short films were made available to students. The safety of individuals participating in classes was guaranteed by password access and an invitation sent prior to an online meeting. Remote learning allowed for the synthesis and deepening of students’ knowledge, improvement of communication skills and development of clinical thinking as future doctors. The disadvantages of online education was the inability to improve practical skills, especially on phantoms, under the direct supervision of a trained instructor.
Go to article

Bibliography

1. Ahmad Al Samaraee: The impact of the COVID-19 pandemic on medical education. British Journal of Hospital Medicine. 2020; 81 (7). Published Online: 20 Jul 2020 https://doi.org/10.12968/ hmed.2020.0191.
2. Skrzypek A., Stalmach-Przygoda A., Dębicka-Dąbrowska D., Kocurek A., Szopa M., Górski S., Szeliga M., Małecki M., Grodecka A., Cebula G., Nowakowski M.: Selected didactic methods used in education of medical students at the Department of Medical Education of Jagiellonian University Medical College. What’s new in medical didactics? General and Professional Education. 2018; 1: 26–32.
3. Silverman J., Kurtz S., Draper J.: Skills for Communicating with Patients, 3rd edition. London: CRC Press, 2016.
4. Małecki Ł., Stalmach-Przygoda A., Górski S., Kocurek A., Skrzypek A., Kowalska B., Nowakowski M.: Wprowadzenie całościowego kursu komunikacji medycznej dla studentów Wydziału Lekarskiego Uniwersytetu Jagiellońskiego Collegium Medicum.= The introduction of a comprehensive communication course for medical students of the Faculty of Medicine at the Jagiellonian University Medical College. Uniwersytet Jagielloński Collegium Medicum Zakład Dydaktyki Medycznej. Sztuka Leczenia. 2017; 1: 73–84.
5. Maran N.J., Glavin R.J.: Low- to high-fidelity simulation — a continuum of medical education? Medical Education. 2003; 37: 22–28.
6. Nikendei Ch., Huber J., Stiepak J., Huhn D., Lauter J., Krautter M.: Modification of Peyton’s four-step approach for small group teaching — a descriptive study. BMC Medical Education. 2014. https://doi. org/10.1186/1472-6920-14-68.
7. Skrzypek A., Szeliga M., Jagielski P., Perera I., Dębicka-Dąbrowska D., Wilczyńska-Golonka M., Górecki T., Cebula G.: The modified Peyton approach in the teaching of cardiac auscultation. Folia Med Crac. 2019; 59 (4): 21–32.
8. Skrzypek A., Kocurek A., Stalmach-Przygoda A., Małecki Ł., Górski S., Kowalska B., Szeliga M., Jabłoński K., Matłok M., Cebula G., Nowakowski M.: Rola profesjonalnych pacjentów symulowanych w nauczaniu komunikacji klinicznej. The role of professional simulated patients in teaching of clinical communication. General and Professional Education. 2017; 4: 29–35.
9. Czekajlo M., Dabrowski M., Dabrowska A.: Symulacja medyczna jako profesjonalne narzędzie wpływające na bezpieczeństwo pacjenta wykorzystywane w procesie nauczania. Merkur Lekarski. 2015; 38 (228): 360–363.
10. Green M., Tariq R., Green P.: Improving Patient Safety through Simulation Training in Anesthesiology: Where Are We? Anesthesiol Res Pract. 2016; 4237523. doi: 10.1155/2016/4237523. Epub 2016 Feb 1.
11. Dieckmann P., Patterson M., Lahlou S., Mesman J., Nystrom P., Krage R.: Variation and adaptation: learning from success in patient safety-oriented simulation training. Adv Simul (Lond). 2017; 2: 21. doi: 10.1186/s41077-017-0054-1.
12. Skrzypek A., Cegielny T., Szeliga M., Jabłoński K., Nowakowski M.: Different perceptions of Problem Based Learning among Polish and Scandinavian students. Is PBL the same for everyone? Preliminary study. General and Professional Education. 2017; 3: 58–64.
13. McMillan M., Little P.: Conceptualizing Problem-Based Learning: Ensuring Realization of Curriculum Intentions. J Probl Based Learn. 2020; 7 (1):1–2.
14. Lucey C.R., Johnston S.C.: The Transformational Effects of COVID-19 on Medical Education. JAMA. 2020; 324 (11): 1033–1034. doi: 10.1001/jama.2020.14136.
Go to article

Authors and Affiliations

Agnieszka Skrzypek
1
Ian Perera
1
Marta Szeliga
1
Grzegorz Cebula
1

  1. Department of Medical Education, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The outcrop of the tsunami deposits, about 6 m thick, is located in the archaeological site Tel Askan in the Al Zhraa locality, southwest of the Gaza City. These deposits are unconformably underlain by sand dunes and sharply overlain by a palaeosol. They are pale gray sands mixed with volcanic ash and fine-grained deposits, and are intercalated with peat, few centimetres thick. The sand-sized grains are well rounded and well sorted, and consist mainly of quartz and subordinate of feldspar. Both macro- and microfossils were observed from tsunami deposits. Additionally, rip-up clasts and pottery shards were observed, indicating higher-flow regime. The potteries in tsunami deposits provide evidence for tsunami inundation at distance of about 1 km from the present shoreline.
Go to article

Bibliography

1. Altinok, Y., Alpar, B., Özer, N., Aykurt, H., 2011. Revision of the tsunami catalogue affecting Turkish coasts and surrounding regions. Natural Hazards and Earth System Sciences 11, 273–291.
2. Ambraseys, N., Karcz, I., 1992. The earthquake of 1546 in the Holy Land. Terra Nova 4, 254–263.
3. Ambraseys, N., Melville, C.P., Adams, R.D., 1994. The Seismicity of Egypt, Arabia and the Red Sea: A Historical Review. Cambridge University Press, pp. 181.
4. Amiran, D.H., 1994. Location index for earthquakes in Israel since 100 BCE. Israel Exploration Journal 46, 120–130.
5. Aránguiz, R., González, G., González, J., Catalán, P.A., Cienfuegos, R., Yagi, Y., Okuwaki, R., Urra, L., Contreras, K., Del Rio, I., Rojas, C., 2016. The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Applied Geophysics 173, 333–348.
6. Bahlburg, H., Spiske, M., 2012. Sedimentology of tsunami inflow and backflow deposits: key differences revealed in a modern example. Sedimentology 59, 1063–1086.
7. Barkai, O., Katz, O., Mushkin, A., Goodman-Tchernov, B.N., 2017. Long-term retreat rates of Israel’s Mediterranean sea cliffs inferred from reconstruction of eroded archaeological sites. Geoarchaeology 1–14.
8. Bruins, H.J., MacGillivray, J.A., Synolakis, C.E., Benjamini, C., Keller, J., Kisch, H.J., Klügel, A., van der Plicht, J., 2008. Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. Journal of Archaeological Science 35, 191–212.
9. Chagué-Goff, C., 2010. Chemical signatures of palaeotsunamis: a forgotten proxy? Marine Geology 271, 67–71.
10. Dominey-Howes, D., 2007. Geological and historical records of tsunami in Australia. Marine Geology 239, 99–123.
11. Fokaefs, A., Papadopoulos, G.A., 2007. Tsunami hazard in the Eastern Mediterranean: strong earthquakes and tsunamis in Cyprus and the Levantine Sea. Natural Hazards 40, 503–526.
12. Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., Talamo, S., 2006. Santorini eruption radiocarbon dated to 1627– 1600 BC. Science 312, 548.
13. Gelfenbaum, G., Jaffe, B., 2003. Erosion and sedimentation from the 17 July 1998 Papua New Guinea tsunami. Pure and Applied Geophysics 160, 1969–1999.
14. Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B., Dominey-Howes, D., 2012. Progress in palaeotsunami research. Sedimentary Geology 243–244, 70–88.
15. Goff, J., McFadgen, B.G., Chagué-Goff, C., 2004. Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Marine Geology 204, 235–250.
16. Goodman-Tchernov, B., Katz, T., Shaked, Y., Qupty, N., Kanari, M., Niemi, T., Agnon, A., 2016. Offshore evidence for an undocumented tsunami event in the “low risk” gulf of Aqaba-Eilat, Northern Red Sea. PLoS One 11, e0145802.
17. Goodman-Tchernov, B., Katz, O., 2016. Holocene-era submerged notches along the southern Levantine coastline: punctuated sea level rise? Quaternary International 401, 17–27.
18. Goodman-Tchernov, B.N., Dey, H.W., Reinhardt, E.G., McCoy, F., Mart, Y., 2009. Tsunami waves generated by the Santorini eruption reached Eastern Mediterranean shores. Geology 37, 943–946.
19. Goto, K., Chagué-goff, C., Goff, J., Jaffe, B., 2012. The future of tsunami research following the 2011 Tohoku-oki event. Sedimentary Geology 282, 1–13.
20. Goto, K., Kawana, T., Imamura, F., 2010. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Science Reviews 102, 77–99.
21. Goto, K., Takahashi, J., Oie, T., Imamura, F., 2011. Remarkable bathymetric change in the nearshore zone by the 2004 Indian Ocean tsunami: Kirinda Harbor, Sri Lanka. Geomorphology 127, 107–116.
22. Hoffmann, N., Master, D., Goodman-Tchernov, B., 2018. Possible tsunami inundation identified amongst 4–5th century BCE archaeological deposits at Tel Ashkelon, Israel. Marine Geology 396, 150–159.
23. Jaffe, B., Gelfenbaum, G., Rubin, D., Peters, R., Anima, R., Swensson, M., Olcese, D., Anticona, L.B., Gomez, J.C., Riega, P.C., 2003. Identification and interpretation of tsunami deposits from the June 23, 2001 Perú tsunami. Coastal Sediments 2003 Conference Proceedings. 24. Katz, O., Mushkin, A., 2013. Characteristics of sea-cliff erosion induced by a strong winter storm in the eastern Mediterranean. Quaternary Research 80, 20–32.
25. Katz, O., Reuven, E., Aharonov, E., 2015. Submarine landslides and fault scarps along the eastern Mediterranean Israeli continental- slope. Marine Geology 369, 100–115.
26. Klein, M., Zviely, D., Kit, E., Shteinman, B., 2007. Sediment transport along the Coast of Israel: examination of fluorescent sand tracers. Journal of Coastal Research 23, 1462–1470.
27. Kortekaas, S., Dawson, A.G., 2007. Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sedimentary Geology 200, 208–221.
28. Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the last glacial maximum to the Holocene. Proceedings of the National Academy of Sciences 111, 15296–15303.
29. Maramai, A., Brizuela, B., Graziani, L., 2014. The Euro-Mediterranean tsunami catalogue. Annals of Geophysics 57, S0435.
30. Moore, A.L., Brian G. McAdoo, B.G., Ruffman, A., 2007. Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sedimentary Geology 200, 336–346.
31. Morton, R.A., Gelfenbaum, G., Jaffe, B.E., 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology 200, 184–207.
32. Negev, A., Gibson, S., 2001. Archaeological Encyclopedia of the Holy Land. New York and London, Continuum, pp. 25–26.
33. Nelson, A.R., Briggs, R.W., Dura, T., Engelhart, S.E., Gelfenbaum, G., Bradley, L., Forman, S.L., Vane, C.H., Kelley, K.A., 2015. Tsunami recurrence in the eastern Alaska-Aleutian arc: a Holocene stratigraphic record from Chirikof Island, Alaska. Geosphere 11, 1172–1203.
34. Papadopoulos, G.A., Gràcia, E., Urgeles, R., Sallares, V., De Martini, P.M., Pantosti, D., González, M., Yalciner, A.C., Mascle, J., Sakellariou, D., Salamon, A., Tinti, S., Karastathis, V., Fokaefs, A., Camerlenghi, A., Novikova, T., Papageorgiou, A., 2014. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: geological signatures, generation mechanisms and coastal impacts. Marine Geology 354, 81–109.
35. Paris, R., Fournier, J., Poizot, E., Etienne, S., Morin, J., Lavigne, F., Wassmer, P., 2010. Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): a coupled offshore-onshore model. Marine Geology 268, 43–54.
36. Peters, R., Jaffe, B., Gelfenbaum, G., 2007. Distribution and sedimentary characteristics of tsunami deposits along the Cascadia margin of western North America. Sedimentary Geology 200, 372–386.
37. Pfannenstiel, M., 1952. Das Quartaer der Levante, I: Die Kueste Palaestina- Syriens, Akad. In: Abhundlungen Der Mathematisch-Naturwissenschaftlichen Klasse, Akademider Wissenschaften Und Der Literatur in Mainz in Kommission Bei F. Steiner, pp. 373–475.
38. Pfannenstiel, M., 1960. Erläuterungen zu den bathymetrischen Karten des östlichen Mittelmeeres. Bulletin de l’Institut Océanographique 1192, 1–60.
39. Phantuwongraj, S., Choowong, M., 2012. Tsunamis versus storm deposits from Thailand. Natural Hazards 63, 31–50.
40. Pilarczyk, J.E., Dura, T., Horton, B.P., Engelhart, S.E., Kemp, A.C., Sawai, Y., 2014. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogeography, Palaeoclimatology, Palaeoecology 413, 144–157.
41. Rosen, A., 2008. Site formation. In: Stager, L., Schloen, D.J., Master, D. (Eds.), Ashkelon 1: Introduction and Overview. Eisenbrauns, Winona Lake, Indiana, pp. 101–104.
42. Sakuna-Schwartz, D., Feldens, P., Schwarzer, K., Khokiattiwong, S., Stattegger, K., 2015. Internal structure of event layers preserved on the Andaman Sea continental shelf, Thailand: tsunami vs. storm and flash-flood deposits. Natural Hazards and Earth System Sciences 15, 1181–1199.
43. Salamon, A., Rockwell, T., Guidoboni, E., Comastri, A., 2011. A critical evaluation of tsunami records reported for the Levant coast from the second millennium BCE to the present. Israel Journal of Earth Sciences 58, 327–354.
44. Salamon, A., Rockwell, T., Ward, S.N., Guidoboni, E., Comastri, A., 2007. Tsunami hazard evaluation of the Eastern Mediterranean: historical analysis and selected modeling. Bulletin of the Seismological Society of America 97, 705–724.
45. Scheffers, A.M., 2002. Paleotsunami evidences from boulder deposits. Science of Tsunami Hazards 20, 26–37.
46. Scheucher, L.E.A., Vortisch, W., 2011. Sedimentological and geomorphological effects of the Sumatra-Andaman tsunami in the area of Khao Lak, southern Thailand. Environmental Earth Sciences 63, 785–796.
47. Shah-Hosseini, M., Morhange, C., De Marco, A., Wante, J., Anthony, E.J., Sabatier, F., Mastronuzzi, G., Pignatelli, C., Piscitelli, A., 2013. Coastal boulders in Martigues, French Mediterranean: evidence for extreme storm waves during the Little Ice Age. Zeitschrift für Geomorphologie, Supplementary Issues 57 (4), 181–199.
48. Sivan, D., Wdowinski, S., Lambeck, K., Galili, E., Raban, A., 2001. Holocene sea-level changes along the Mediterranean coast of Israel, based on archaeological observations and numerical model. Palaeogeography, Palaeoclimatology, Palaeoecology 167, 101–117.
49. Sivan, D., Lambeck, K., Toueg, R., Raban, A., Porath, Y., Shirman, B., 2004. Ancient coastal wells of Caesarea Maritima, Israel, an indicator for relative sea level changes during the last 2000 years. Earth and Planetary Science Letters 222, 315–330.
50. Soloviev, S.L., Solovieva, O.N., Go, C.N., Kim, K.S., Shchetnikov, N.A., 2000. Tsunamis in the Mediterranean Sea 2000 BC–2000 AD. Kluwer Academic Publishers, Dordrecht, pp. 239.
51. Ubeid, K.F., 2016. Quaternary Stratigraphy Architecture and Sedimentology of Gaza and Middle- to Khan Younis Governorates (The Gaza Strip, Palestine). International Journal of Scientific and Research Publications 6, 109–117.
52. Ubeid, K.F., 2010. Marine lithofacies and depositional zones analysis along coastal ridge in Gaza Strip, Palestine. Journal of Geography and Geology 2, 68–76.
53. Ubeid, K.F., 2011. Sand Characteristics and Beach Profiles of the Coast of Gaza Strip, Palestine. Serie Correlacion Geologica 27, 121–132.
54. Ubeid, K.F., Al-Agha, M.R., Almeshal, W.I., 2018. Assessment of heavy metals pollution in marine surface sediments of Gaza Strip, southeast Mediterranean Sea. Journal of Mediterranean Earth Sciences 10, 109–121.
55. Ubeid, K.F., Albatta, A., 2014. Sand dunes of the Gaza Strip (southwestern Palestine): morphology, textural characteristics and associated environmental impacts. Earth Sciences Research Journal 18, 131–142.
56. Ubeid, K.F., Ramadan, K.A., 2017. Activity concentration and spatial distribution of radon in beach sands of Gaza Strip, Palestine. Journal of Mediterranean Earth Sciences 9, 19–28.
57. Weiss, R., 2012. The mystery of boulders moved by tsunamis and storms. Marine Geology 295, 28–33.
58. Yolsal, S., Taymaz, T., Yalc, Iner, A.C., 2007. Understanding tsunamis, potential source regions and tsunami-prone mechanisms in the Eastern Mediterranean. Geological Society London Special Publications 291, 201–230.
Go to article

Authors and Affiliations

Khalid Fathi Ubeid
1
ORCID: ORCID

  1. Department of Geology, Faculty of Science, Al Azhar University-Gaza, P.O. Box 1277, Gaza Strip, Palestine

This page uses 'cookies'. Learn more