Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Magnesium-based alloys are widely used in the construction, automotive, aviation and medical industries. There are many parameters that can be modified during their synthesis in order to obtain an alloy with the desired microstructure and advantageous properties. Modifications to the chemical composition and parameters of the synthesis process are of key importance. In this work, an Mg-based alloy with a rare-earth element addition was synthesized by means of mechanical alloying (MA). The aim of this work was to study the effect of milling times on the Mg-based alloy with a rare-earth addition on its structure and microhardness. A powder mixture of pure elements was milled in a SPEX 8000D high energy shaker ball mill under an argon atmosphere using a stainless steel container and balls. The sample was mechanically alloyed at the following milling times: 3, 5, 8 and 13 h, with 0.5 h interruptions. The microstructure and hardness of samples were investigated. The Mg-based powder alloy was examined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and using a Vickers microhardness test. The results showed that microhardness of the sample milled for 13 h was higher than that of those with milling time of 3, 5 and 8 h.
Go to article

Bibliography

  1.  F. Witte, “The history of biodegradable magnesium implants: A review,” Acta Biomater., vol. 6, no. 5, pp. 1680–1692, 2010.
  2.  N. Eliaz, “Corrosion of metallic biomaterials: A review,” Materials (Basel)., vol. 12, no. 3, 2019.
  3.  S. Lesz, J. Kraczla, and R. Nowosielski, “Structure and compression strength characteristics of the sintered Mg-Zn-Ca-Gd alloy for medical applications,” Arch. Civ. Mech. Eng., vol. 18, no. 4, pp. 1288–1299, 2018.
  4.  T. Narushima, New-generation metallic biomaterials, 2nd ed. Elsevier Ltd., 2019.
  5.  D. Persaud-Sharma and A. Mcgoron, “Biodegradable magnesium alloys: A review of material development and applications,” J. Biomim. Biomater. Tissue Eng., vol. 12, no. 1, pp. 25–39, 2012.
  6.  N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, and M. Koç, “Review of magnesium-based biomaterials and their applications,” J. Magnes. Alloy., vol. 6, no. 1, pp. 23–43, 2018.
  7.  M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” Biomaterials, vol. 27, no. 9, pp. 1728–1734, Mar. 2006.
  8.  S. Lesz, B. Hrapkowicz, M. Karolus, and K. Gołombek, “Characteristics of the Mg-Zn-Ca-Gd alloy after mechanical alloying,” Materials (Basel)., vol. 14, no. 1, pp. 1–14, 2021.
  9.  A. Drygała, L.A. Dobrzański, M. Szindler, M. Prokopiuk Vel Prokopowicz, M. Pawlyta, and K. Lukaszkowicz, “Carbon nanotubes counter electrode for dye-sensitized solar cells application,” Arch. Metall. Mater., vol. 61, no. 2A, pp. 803–806, 2016.
  10.  A. Drygała, M. Szindler, M. Szindler, and E. Jonda, “Atomic layer deposition of TiO2 blocking layers for dye-sensitized solar cells,” Microelectron. Int., vol. 37, no. 2, pp. 87–93, 2020.
  11.  M. Beniyel, M. Sivapragash, S.C. Vettivel, and P.S. Kumar, “Optimization of tribology parameters of AZ91D magnesium alloy in dry sliding condition using response surface methodology and genetic algorithm,” Bull. Polish Acad. Sci. Tech. Sci., pp. 1–10, 2021.
  12.  L.A. Dobrzański, L.B. Dobrzański, and A.D. Dobrzańska-Danikiewicz, “Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics,” J. Achiev. Mater. Manuf. Eng., vol. 99, no. 1, pp. 14–41, 2020.
  13.  L.A. Dobrzański, L.B. Dobrzański, and A.D. Dobrzańska-Danikiewicz, “Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage,” J. Achiev. Mater. Manuf. Eng., vol. 98, no. 2, pp. 56–85, 2020.
  14.  K. Cesarz-Andraczke and A. Kazek-Kęsik, “PEO layers on Mg-based metallic glass to control hydrogen evolution rate,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 119–124, 2020.
  15.  M.K. Datta et al., “Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying,” Mater. Sci. Eng. B, vol. 176, no. 20, pp. 1637–1643, Dec. 2011.
  16.  S.A. Abdel-Gawad and M.A. Shoeib, “Corrosion studies and microstructure of Mg-Zn-Ca alloys for biomedical applications,” Surf. Interfaces, vol. 14, no. August 2018, pp. 108–116, 2019.
  17.  M. Krämer et al., “Corrosion behavior, biocompatibility and biomechanical stability of a prototype magnesium-based biodegradable intramedullary nailing system,” Mater. Sci. Eng. C, vol. 59, pp. 129–135, 2016.
  18.  J. Kuhlmann et al., “Fast escape of hydrogen from gas cavities around corroding magnesium implants,” Acta Biomater., vol. 9, no. 10, pp. 8714–8721, 2013.
  19.  B. Hrapkowicz and S.T. Lesz, “Characterization of Ca 50 Mg 20 Zn 12 Cu 18 Alloy,” Arch. Foundry Eng., vol. 19, no. 1, pp. 75–82, 2019.
  20.  J. Wilson, Metallic biomaterials. Elsevier Ltd, 2018.
  21.  H.J. Yu, J.Q. Wang, X.T. Shi, D. V. Louzguine-Luzgin, H.K. Wu, and J.H. Perepezko, “Ductile biodegradable Mg-based metallic glasses with excellent biocompatibility,” Adv. Funct. Mater., vol. 23, no. 38, pp. 4793–4800, 2013.
  22.  B. Zberg, P.J. Uggowitzer, and J.F. Löffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants,” Nat. Mater., vol. 8, p. 887, Sep. 2009.
  23.  J. Byrne, E. O’Cearbhaill, and D. Browne, “Comparison of crystalline and amorphous versions of a magnesium-based alloy: corrosion and cell response,” Eur. Cells Mater., vol. 30, no. Supplement 3, p. 75, 2015.
  24.  O. Baulin, D. Fabrègue, H. Kato, A. Liens, T. Wada, and J.M. Pelletier, “A new, toxic element-free Mg-based metallic glass for biomedical applications,” J. Non. Cryst. Solids, vol. 481, no. September 2017, pp. 397–402, 2018.
  25.  M.B. Kannan and R.K.S. Raman, “In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified- simulated body fluid,” Biomaterials, vol. 29, no. 15, pp. 2306–2314, 2008.
  26.  M. Salahshoor and Y.B. Guo, “Biodegradation control of magnesium-calcium biomaterial via adjusting surface integrity by synergistic cutting-burnishing,” Procedia CIRP, vol. 13, pp. 143–149, 2014.
  27.  H. Wang, Y. Estrin, and Z. Zúberová, “Bio-corrosion of a magnesium alloy with different processing histories,” Mater. Lett., vol. 62, no. 16, pp. 2476–2479, 2008.
  28.  Y. Guangyin, L. Manping, D. Wenjiang, and A. Inoue, “Microstructure and mechanical properties of Mg-Zn-Si-based alloys,” Mater. Sci. Eng. A, vol. 357, no. 1–2, pp. 314–320, 2003.
  29.  Z. Liang et al., “Effects of Ag, Nd, and Yb on the microstructures and mechanical properties of Mg-Zn-Ca metallic glasses,” Metals (Basel)., vol. 8, no. 10, pp. 1–10, 2018.
  30.  S. Lesz, T. Tański, B. Hrapkowicz, M. Karolus, J. Popis, and K. Wiechniak, “Characterisation of Mg-Zn-Ca-Y powders manufactured by mechanical milling,” J. Achiev. Mater. Manuf. Eng., vol. 103, no. 2, pp. 49–59, 2020.
  31.  S.M. Al Azar and A.A. Mousa, Mechanical and physical methods for the metal oxide powders production. INC, 2020.
  32.  I. Polmear, D. StJohn, J.-F. Nie, and M. Qian, Novel Materials and Processing Methods. 2017.
  33.  C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, “Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review,” Scanning, vol. 2018. 2018.
  34.  M. Pogorielov, E. Husak, A. Solodivnik, and S. Zhdanov, “Magnesium-based biodegradable alloys: Degradation, application, and alloying elements,” Interventional Med. Appl. Sci., vol. 9, no. 1. pp. 27–38, 2017.
  35.  Y.Q. Tang, Q.Y. Wang, Q.F. Ke, C.Q. Zhang, J.J. Guan, and Y.P. Guo, “Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing,” Chem. Eng. J., vol. 387, no. January, p. 124166, 2020.
  36.  C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater Sci., vol. 46, no. 1–2. Pergamon, pp. 1–184, 01-Jan-2001.
  37.  M. Karolus, “Applications of Rietveld refinement in Fe-B-Nb alloy structure studies,” J. Mater. Process. Technol., vol. 175, no. 1–3, pp. 246–250, 2006.
  38.  L.A. Dobrzański, B. Tomiczek, G. Matula, and K. Gołombek, “Role of Halloysite Nanoparticles and Milling Time on the Synthesis of AA 6061 Aluminium Matrix Composites,” Adv. Mater. Res., vol. 939, pp. 84–89, May 2014.
  39.  M. Jurczyk, Bionanomaterials for Dental Applications. Pan Stanford Publishing, 2012.
Go to article

Authors and Affiliations

Sabina Lesz
1
ORCID: ORCID
Bartłomiej Hrapkowicz
1
ORCID: ORCID
Klaudiusz Gołombek
1
ORCID: ORCID
Małgorzata Karolus
2
ORCID: ORCID
Patrycja Janiak
1

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100, Gliwice, Poland
  2. Institute of Materials Engineering, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article deals with the technological principles regarding the final drying process of the porous ammonium nitrate (PAN) granules in multistage gravitational shelf dryers. The data on the dryer’s optimal technological operating modes are obtained. PAN samples are studied; the regularity of the porous structure change in the granule depending on the dryer’s hydrodynamic and thermodynamic conditions is established. Experimental data obtained during the research will be used to create a methodology for the engineering calculation of gravitational shelf dryers. Moreover, the data on the optimal operating conditions of the drying machines at the final drying stage will be used to improve the technology to form porous granules from agricultural ammonium nitrate.
Go to article

Bibliography

  1.  T.J. Janssen, Explosive materials: classification, composition and properties, Nova Science Publishers, Inc., New York, 2011.
  2.  Patent No. 5540793 US: Porous prilled ammonium nitrate, 1996.
  3.  Patent No. 2118074, CA: Porous prilled ammonium nitrate, 2002.
  4.  Patent No. 2093727, CA: Hardened porous ammonium nitrate, 2004.
  5.  Patent No. 2004‒256365, JP: Method of manufacturing porous granular ammonium nitrate, 2004.
  6.  Patent No. 2005‒350276, JP: Method for producing porous granular ammonium nitrate, 2005.
  7.  Patent No. 2221717, CA: Procedure and installation for the manufacture of porous ammonium nitrate, 2005.
  8.  Patent No. 102093146, CN: Microporous granular ammonium nitrate and preparation methods thereof, 2011.
  9.  Patent No. 102173968, CN: Production method of porous granular ammonium nitrate, 2011.
  10.  Patent No. 2452719, RU: Device for production of porous granulated ammonium nitrate and method for production of porous granulated ammonium nitrate, 2012.
  11.  Patent No. 391973, PL: Method for producing granulated porous ammonium nitrate, 2012.
  12.  Patent No. 103896695, CN: Microporous pelletal ammonium nitrate and preparation method thereof, 2014.
  13.  Patent No. 204384319, CN: Device for producing porous ammonium nitrate and industrial ammonium nitrate, 2015.
  14.  Patent No. 204237724, CN: Recycling device for caked ammonium nitrate during production of porous ammonium nitrate, 2015.
  15.  Patent No. 104311372, CN: Porous ammonium nitrate production caking ammonium nitrate recycling apparatus and method of use, 2016.
  16.  Patent No. 106316727 CN: Porous and granular ANFO (ammonium nitrate fuel oil) and preparation method thereof, 2017.
  17.  Patent No. 2599170, RU: Method of producing porous granulated ammonium nitrate, 2016.
  18.  Patent No. 2600061, RU: Method of porous granulated ammonium nitrate producing and device for its implementation, 2016.
  19.  Patent No. 112294 UA: Device for granulation in the suspended layer, 2016.
  20.  Patent No. 112393 UA: Vortex granulator with utilization of waste gases, 2016.
  21.  Patent No. 112394 UA: Vortex granulator, 2016.
  22.  Patent No. 112622 UA: Vortex granulator, 2016.
  23.  Patent No. 113141 UA: Vortex granulator, 2017.
  24.  G. Martin and W. Barbour, Industrial nitrogen compounds and explosives, Chemical Manufacture and Analysis, Watchmaker Publishing, Seaside, 2003.
  25.  N. Kubota, Propellants and explosives: thermochemical aspects of combustion. 3rd ed., Wiley-VCH Verlag & Co.,Weinheim, 2015.
  26.  D. Buczkowski and B. Zygmunt, “Detonation Properties of Mixtures of Ammonium Nitrate Based Fertilizers and Fuels”, Cent. Eur. J. Energetic Mater., vol. 8, no. 2, pp. 99–106, 2011.
  27.  A.E. Artyukhov and V.I. Sklabinskyi, “Experimental and industrial implementation of porous ammonium nitrate producing process in vortex granulators”, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, vol. 6, pp. 42–48, 2013.
  28.  A.E. Artyukhov and N.A. Artyukhova, “Utilization of dust and ammonia from exhaust gases: new solutions for dryers with different types of fluidized bed”, J. Environ. Health Sci. Eng., vol. 16, no. 2, pp. 193–204, 2018.
  29.  A.E. Artyukhov and V.I. Sklabinskyi, “Investigation of the temperature field of coolant in the installations for obtaining 3D nanostructured porous surface layer on the granules of ammonium nitrate”, J. Nano- and Electron. Phys., vol. 9, no. 1, pp. 01015-1–01015-4, 2017.
  30.  N.A. Artyukhova, “Multistage finish drying of the N4HNO3 porous granules as a factor for nanoporous structure quality improvement”, J. Nano- and Electron. Phys., vol. 10, no. 3, pp. 03030-1–03030-5, 2018.
  31.  J. Hahm and A. Beskok, “Numerical simulation of multiple species detection using hydrodynamic/electrokinetic focusing”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 53, no. 4, pp. 325–334, 2005.
  32.  А.E. Artyukhov, V.K. Obodiak, P.G. Boiko, and P.C. Rossi, Computer modeling of hydrodynamic and heat-mass transfer processes in the vortex type granulation devices, in CEUR Workshop Proceedings, vol. 1844, pp. 33–47, 2017.
  33.  A.E. Artyukhov, N.O. Artyukhova, and A.V. Ivaniia, “Creation of software for constructive calculation of devices with active hydrodynamics”, in Proceedings of the 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET 2018), 2018, pp. 139–142.
  34.  A.E. Artyukhov, N.A. Artyukhova, A.V. Ivaniia, and J. Gabrusenoks, “Multilayer modified NH4NO3 granules with 3D nanoporous structure: effect of the heat treatment regime on the structure of macro- and mezopores”, in Proc IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF-2017), 2017, pp. 315–318.
  35.  A.E. Artyukhov and J. Gabrusenoks, “Phase composition and nanoporous structure of core and surface in the modified granules of NH4NO3”, Springer Proc. Phys., vol. 210, pp. 301–309, 2018.
  36.  N.O. Artyukhova and J. Krmela, “Nanoporous structure of the ammonium nitrate granules at the final drying: The effect of the dryer operation mode”, J. Nano- Electron. Phys., vol. 11, no. 4, pp. 04006-1–04006-4, 2019.
  37.  V.K. Obodiak, N.O. Artyukhova, and A.E. Artyukhov, “Calculation of the residence time of dispersed phase in sectioned devices: Theoretical basics and software implementation” Lect. Notes Mech. Eng., pp. 813‒820, 2020.
  38.  B. Paprocki, A. Pregowska, and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 225–233, 2020, doi: 10.24425/bpasts.2020.131844.
  39.  W. Jefimowski A. Nikitenko Z. Drążek, and M. Wieczorek, “Stationary supercapacitor energy storage operation algorithm based on neural network learning system”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 733–738, 2020, doi: 10.24425/bpasts.2020.134176.
Go to article

Authors and Affiliations

Nadiia Artyukhova
1
Jan Krmela
2
ORCID: ORCID
Artem Artyukhov
1
ORCID: ORCID
Vladimíra Krmelová
3
Mária Gavendová
3
Alžbeta Bakošová
2

  1. Sumy State University, Oleg Balatskyi Academic and Research Institute of Finance, Economics and Management, Department of Marketing, Rymskogo-Korsakova st. 2, 40007, Sumy, Ukraine
  2. Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, Department of Numerical Methods and Computational Modeling, Ivana Krasku 491/30, 020 01 Púchov, Slovakia
  3. Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, Department of Material Technologies and Environment, Ivana Krasku 491/30, 020 01 Púchov, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Magnesium-based materials constitute promising alternatives for medical applications, due to their characteristics, such as good mechanical and biological properties. This opens many possibilities for biodegradable materials to be used as less-invasive options for treatment. Degradation is prompted by their chemical composition and microstructure. Both those aspects can be finely adjusted by means of proper manufacturing processes, such as mechanical alloying (MA). Furthermore, MA allows for alloying elements that would normally be really hard to mix due to their very different properties. Magnesium usually needs various alloying elements, which can further increase its characteristics. Alloying magnesium with rare earth elements is considered to greatly improve the aforementioned properties. Due to that fact, erbium was used as one of the alloying elements, alongside zinc and calcium, to obtain an Mg₆₄Zn₃₀Ca₄Er₁ alloy via mechanical alloying. The alloy was milled in the SPEX 8000 Dual Mixer/Mill high energy mill under an argon atmosphere for 8, 13, and 20 hours. It was assessed using X-ray diffraction, energy dispersive spectroscopy and granulometric analysis as well as by studying its hardness. The hardness values reached 232, 250, and 302 HV, respectively, which is closely related to their particle size. Average particle sizes were 15, 16, and 17 μm, respectively
Go to article

Bibliography

  1.  C. Suryanarayana and N. Al-Aqeeli, “Mechanically alloyed nanocomposites,” Prog. Mater. Sci., vol. 58, no. 4, pp. 383–502, May 2013.
  2.  C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., vol. 46, no. 1–2, pp. 1–184, Jan. 2001.
  3.  A. Drygała, L.A. Dobrzański, M. Szindler, M. Prokopiuk Vel Prokopowicz, M. Pawlyta, and K. Lukaszkowicz, “Carbon nanotubes counter electrode for dye-sensitized solar cells application,” Arch. Metall. Mater., vol. 61, no. 2A, pp. 803–806, 2016.
  4.  L.A. Dobrzański and A. Drygała, “Influence of Laser Processing on Polycrystalline Silicon Surface,” Mater. Sci. Forum, vol. 706–709, pp. 829–834, Jan. 2012.
  5.  L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, and A. Drygała, “Structures, properties and development trends of laser-surface-treated hot-work steels, light metal alloys and polycrystalline silicon,” in Laser Surface Engineering: Processes and Applications, Elsevier Inc., 2015, pp. 3–32.
  6.  C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., vol. 46, no. 1–2, pp. 1–184, Jan. 2001.
  7.  M. Toozandehjani, K.A. Matori, F. Ostovan, S.A. Aziz, and M.S. Mamat, “Effect of milling time on the microstructure, physical and mechanical properties of Al-Al2O3 nanocomposite synthesized by ball milling and powder metallurgy,” Materials (Basel)., vol. 10, no. 11, p. 1232, 2017.
  8.  A. Kennedy et al., “A Definition and Categorization System for Advanced Materials: The Foundation for Risk-Informed Environmental Health and Safety Testing,” Risk Anal., vol. 39, no. 8, pp. 1783–1795, 2019.
  9.  M. Tulinski and M. Jurczyk, “Nanomaterials Synthesis Methods,” in Metrology and Standardization of Nanotechnology, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, pp. 75–98.
  10.  K. Cesarz-Andraczke and A. Kazek-Kęsik, “PEO layers on Mg-based metallic glass to control hydrogen evolution rate,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 119–124, 2020.
  11.  M. Beniyel, M. Sivapragash, S.C. Vettivel, and P.S. Kumar, “Optimization of tribology parameters of AZ91D magnesium alloy in dry sliding condition using response surface methodology and genetic algorithm,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 1–10, 2021.
  12.  M. Abbasi, S.A. Sajjadi, and M. Azadbeh, “An investigation on the variations occurring during Ni3Al powder formation by mechanical alloying technique,” J. Alloys Compd., vol. 497, no. 1–2, pp. 171–175, May 2010.
  13.  F. Neves, F.M.B. Fernandes, I. Martins, and J.B. Correia, “Parametric optimization of Ti–Ni powder mixtures produced by mechanical alloying,” J. Alloys Compd., vol. 509, pp. S271–S274, Jun. 2011.
  14.  L. Beaulieu, D. Larcher, R. Dunlap, and J. Dahn, “Nanocomposites in the Sn–Mn–C system produced by mechanical alloying,” J. Alloys Compd., vol. 297, no. 1–2, pp. 122–128, Feb. 2000.
  15.  J.S. Benjamin and T.E. Volin, “The mechanism of mechanical alloying,” Metall. Trans., vol. 5, pp. 1929–1934, 1974.
  16.  S. Lesz, J. Kraczla, and R. Nowosielski, “Structure and compression strength characteristics of the sintered Mg–Zn–Ca–Gd alloy for medical applications,” Arch. Civ. Mech. Eng., vol. 18, no. 4, pp. 1288–1299, Sep. 2018.
  17.  S. Lesz, B. Hrapkowicz, M. Karolus, and K. Gołombek, “Characteristics of the Mg-Zn-Ca-Gd alloy after mechanical alloying,” Materials (Basel)., vol. 14, no. 1, pp. 1–14, 2021.
  18.  S. Lesz, T. Tański, B. Hrapkowicz, M. Karolus, J. Popis, and K. Wiechniak, “Characterisation of Mg-Zn-Ca-Y powders manufactured by mechanical milling,” J. Achiev. Mater. Manuf. Eng., vol. 103, no. 2, pp. 49–59, 2020.
  19.  M. Karolus and J. Panek, “Nanostructured Ni-Ti alloys obtained by mechanical synthesis and heat treatment,” J. Alloys Compd., vol. 658, pp. 709–715, Feb. 2016.
  20.  A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, M. Karolus, and B. Kotur, “Influence of rare earth elements on crystallization of Fe 82Nb2B14RE2 (RE = Y, Gd, Tb, and Dy) amorphous alloys,” J. Non. Cryst. Solids, vol. 357, no. 1, pp. 4–9, Jan. 2011.
  21.  B. Hrapkowicz and S.T. Lesz, “Characterization of Ca 50 Mg 20 Zn 12 Cu 18 Alloy,” Arch. Foundry Eng., vol. 19, no. 1, pp. 75–82, 2019.
  22.  M.K. Datta et al., “Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying,” Mater. Sci. Eng. B, vol. 176, no. 20, pp. 1637–1643, Dec. 2011.
  23.  J. Zhang et al., “The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study,” Acta Biomater., vol. 69, pp. 372–384, 2018.
  24.  M. Yuasa, M. Hayashi, M. Mabuchi, and Y. Chino, “Improved plastic anisotropy of Mg–Zn–Ca alloys exhibiting high-stretch formability: A first-principles study,” Acta Mater., vol. 65, pp. 207–214, Feb. 2014.
  25.  L.M. Plum, L. Rink, and H. Haase, “The essential toxin: impact of zinc on human health.,” Int. J. Environ. Res. Public Health, vol. 7, no. 4, pp. 1342–65, 2010.
  26.  M. Salahshoor and Y. Guo, “Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance.,” Mater. (Basel, Switzerland), vol. 5, no. 1, pp. 135–155, Jan. 2012.
  27.  H.S. Brar, M.O. Platt, M. Sarntinoranont, P.I. Martin, and M.V. Manuel, “Magnesium as a biodegradable and bioabsorbable material for medical implants,” Jom, vol. 61, no. 9. pp. 31–34, 2009.
  28.  M. Pogorielov, E. Husak, A. Solodivnik, and S. Zhdanov, “Magnesium-based biodegradable alloys: Degradation, application, and alloying elements,” Interventional Medicine and Applied Science, vol. 9, no. 1. pp. 27–38, 2017.
  29.  N. Hort et al., “Magnesium alloys as implant materials – Principles of property design for Mg–RE alloys,” Acta Biomater., vol. 6, no. 5, pp. 1714–1725, May 2010.
  30.  Y. Kawamura and M. Yamasaki, “Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure,” Mater. Trans., vol. 48, no. 11, pp. 2986–2992, 2007.
  31.  C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, “Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review,” Scanning, vol. 2018. p. 9216314, 2018.
  32.  S. Seetharaman, S. Tekumalla, B. Lalwani, H. Patel, N.Q. Bau, and M. Gupta, “Microstructure and Mechanical Properties New Magnesium- Zinc-Gadolinium Alloys,” in Magnesium Technology 2016, Cham: Springer International Publishing, 2016, pp. 159–163.
  33.  S. Seetharaman et al., “Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg-Al alloys,” J. Alloys Compd., vol. 648, pp. 759–770, Jul. 2015.
  34.  R. Ahmad, N.A. Wahab, S. Hasan, Z. Harun, M.M. Rahman, and N.R. Shahizan, “Effect of erbium addition on the microstructure and mechanical properties of aluminium alloy,” in Key Engineering Materials, 2019, vol. 796, pp. 62–66.
  35.  C.L. Chen and Y.M. Dong, “Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe-Cr-Al ODS alloys,” Mater. Sci. Eng. A, vol. 528, no. 29–30, pp. 8374–8380, Nov. 2011.
  36.  K. Kowalski, M. Nowak, J. Jakubowicz, and M. Jurczyk, “The Effects of Hydroxyapatite Addition on the Properties of the Mechanically Alloyed and Sintered Mg-RE-Zr Alloy,” J. Mater. Eng. Perform., vol. 25, no. 10, pp. 4469–4477, Oct. 2016.
  37.  L.A. Dobrzański, B. Tomiczek, G. Matula, and K. Gołombek, “Role of Halloysite Nanoparticles and Milling Time on the Synthesis of AA 6061 Aluminium Matrix Composites,” Adv. Mater. Res., vol. 939, pp. 84–89, May 2014.
  38.  J. Dutkiewicz, S. Schlueter, and W. Maziarz, “Effect of mechanical alloying on structure and hardness of TiAl-V powders,” in Journal of Metastable and Nanocrystalline Materials, 2004, vol. 20–21, pp. 127–132.
Go to article

Authors and Affiliations

Bartłomiej Hrapkowicz
1
ORCID: ORCID
Sabina Lesz
1
ORCID: ORCID
Marek Kremzer
1
ORCID: ORCID
Małgorzata Karolus
2
ORCID: ORCID
Wojciech Pakieła
1
ORCID: ORCID

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  2. Institute of Materials Engineering, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland

This page uses 'cookies'. Learn more