Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of rolling of 1.25Cr-1Mo-0.5V-0.3C American Iron and Steel Institute 4340 modified steel for highspeed railway brake discs on the microstructure and mechanical properties was investigated. The materials were hot-rolled at 0%, 51%, and 66% reduction ratios, and then analyzed by optical microscopy, scanning electron microscopy, and electron backscattering diffraction (EBSD). needle-shaped ferrite block morphology in bainite varied with the rolling ratio. EBSD analysis reveals dynamic recovery and dynamic recrystallization, affected ferrite block boundaries and dislocation densities during rolling. Mechanical tests showed that hardness, toughness and elongation increase at higher rolling reduction ratio, while strength remained relatively constant. In particular, the impact toughness increased almost twice from the level of 70 J in S1 (0% reduction) to the level of 130 J in S3 (66% reduction). These results showed that the hot rolling can significantly improve the strength and toughness combination of cast brake discs material.
Go to article

Authors and Affiliations

Hyo-Seong Kim
1 2 4
ORCID: ORCID
Moonseok Kang
1
ORCID: ORCID
Minha Park
1
ORCID: ORCID
Byung Jun Kim
1
ORCID: ORCID
Yong-Shin Kim
3
Tae Young Lee
3
Byoungkoo Kim
1
ORCID: ORCID
Yong-Sik Ahn
2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, 46938, Busan, Republic of Korea
  2. Pukyong National University, Department of Materials Science and Engineering, 48547, Busan, Republic of Korea
  3. KATEM, 51395, Changwon, Republic of Korea
  4. HD Korea Shipbuilding & Offshore Engineering, 44032, Ulsan, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

We investigated the effect of Cr thin film deposition on the thermal stability and corrosion resistance of hot-dip aluminized steel. A high-quality Cr thin film was deposited on the surface of the Al-9 wt. % Si-coated steel sheets by physical vapor deposition. When the Al-Si coated steel sheets were exposed to a high temperature of 500℃, Fe from the steel substrate diffused into the Al-Si coating layer resulting in discoloration. However, the highly heat-resistant Cr thin film deposited on the Al-Si coating prevented diffusion and surface exposure of Fe, improving the heat and corrosion resistances of the Al-Si alloy coated steel sheet.
Go to article

Authors and Affiliations

Jae-Hyeon Kim
1
Jung-Ha Lee
2
Seung-Beop Lee
2
Sung-Jin Kim
3
ORCID: ORCID
Min-Suk Oh
1
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering And Research Center For Advanced Materials Development, Jeonju, Republic of Korea
  2. Jeonbuk National University, School of International Engineering And Science, Jeonju, Republic of Korea
  3. Sunchon National University, Department of Advanced Materials Engineering, Sunchon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, 316L stainless steel powder was used to produce a porous body that could be used in a specific environment. In contrast to the existing method of producing filters using only spherical powders, we attempted to produce filters using plate- and needle-like powders and evaluated their performance. In the powder preparation step, the shape change of the powder was analyzed by changing the size of the stainless-steel balls used for ball milling. Then, the variations in properties of the sintered porous body caused by the ball size were investigated. As the average ball size decreased, the average particle size of the powder decreased. Moreover, the surface area and pore size of the porous body decreased. Additionally, when balls of different sizes were mixed, the porous body showed a mixture of coarse and fine pores.
Go to article

Authors and Affiliations

Woo Cheol Kim
1
ORCID: ORCID
Jongmin Byun
2
ORCID: ORCID

  1. Seoul Nat ional University of Science and Technology, Depa rt of Mat erials Science and Engineering, Seoul, Republic of Korea
  2. Seoul Nat ional University of Science and Technology, Institute of Powder Technology, Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In the electropolishing process, the polishing quality of the metal surface varies according to the contamination of the electrolyte. In this study, the electrolyte was evaluated according to the usage time, and the effect of each factor on electropolishing was investigated. As the electrolyte is contaminated, the concentration of metal ions in the electrolyte increases and the ion conductivity decreases. In addition, the pH and specific gravity of the electrolyte increase due to the metal sludge formed as the metal ion concentration increases. When the electrolyte usage time was more than 5 days, many scratches remained on the surface of 316L stainless steel, and relatively high surface roughness was measured. The surface roughness improvement rate compared to the initial specimen was 30% for the unused electrolyte, 26% on the 3rd day, 19% on the 5th day, and 17.5% on the 13th day. Since the low current density due to electrolyte contamination causes a decrease in polishing efficiency, initial scratches on the metal surface still exist on the polished surface. Therefore, it is necessary to manage the electrolyte to maintain the quality of electropolishing.
Go to article

Authors and Affiliations

Woo-Chul Jung
1
ORCID: ORCID
Hyunseok Yang
1
ORCID: ORCID
Seon-Jin Choi
2
ORCID: ORCID
Man-Sik Kong
1
ORCID: ORCID

  1. Advanced Material & Processing Center (Institute for Advanced Engineering, Yongin, Korea)
  2. Division of Materials Science and Engineering, Hanyang University, Seoul, South Korea

Authors and Affiliations

Sang-Hyeon Jo
1
ORCID: ORCID
Seong-Hee Lee
1
ORCID: ORCID

  1. Mokpo National University, Advanced Materials Science and Engineering, Muan-gun , Jeonnam 58554, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, Bi-doped SnSe was fabricated through the high energy ball milling and the hydrogen reduction of Bi2O3, and its thermoelectric properties were analyzed. The specimen with pure-Bi was fabricated as a control group and properties were compared. In the case of specimens with added Bi2O3, when sintering was performed in a hydrogen atmosphere, Bi2O3 with a high melting point was reduced to Bi with a relatively low melting point. At this time, because of the appearance of the liquid phase, the orientation of the (400) plane increased, and the density was improved. As a result, the change of SnSe to n-type was confirmed in the temperature range of 300 K - 773 K due to Bi doping. Additionally, when Bi2O3 was used instead of pure-Bi, the thermal conductivity, which is inversely proportional to the figure of merit, decreased, and the electrical conductivity increased, resulting in an improvement in the figure of merit.
Go to article

Authors and Affiliations

Jin Kwang Jang
1
ORCID: ORCID
Jaeyun Moon
2
ORCID: ORCID
Jongmin Byun
1 3
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
  2. University of Nevada, Las Vegas, Department of Mechanical Engineering, 4505 S. Maryland Pkwy Las Vegas, Nv 89154, United States
  3. Seoul National University of Science And Technology, The Institute of Powder Technology, Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Sintered ore used as blast furnace burden materials is produced by mixing iron ore, coke, and limestone, then burning the coke and sintering the iron ore with the combustion heat. Among the coke charged, A particle size of 0.25 mm or less has an insignificant effect as a heat source and adhere to the surface of other materials to inhibit the reaction between oxygen and raw materials, thereby decreasing the quality of sintered ore. Therefore, to increase combustion efficiency, it is necessary to reduce the ratio of coke breeze in the charged coke.
In this study, theoretical calculation, experiment and simulation were conducted to investigate the possibility of size classification by drag force in the process of dropping coke after being transported through a belt conveyor. The height of belt conveyor was at 1m, and velocity of the belt was 1.5, 2.3, and 2.6 m/s, which were considered as experimental variables. After falling, the distribution of coke particle size according to the horizontal travel distance was confirmed, and a fall trajectory prediction formula model was created through the drag model of polydisperse system and compared with the experimental and analysis results.
Go to article

Authors and Affiliations

Ji-A Lee
1
ORCID: ORCID
Bong-Min Jin
1
ORCID: ORCID
Jeong-Whan Han
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the effect of adding Al–5Ti–1B grain refiner on the solidification microstructure and hot deformation behavior of direct-chill (DC) cast Al–Zn–Mg–Cu alloys. The grain refiner significantly decreased the grain size and modified the morphology. Fine-grained (FG) alloys with grain refiners exhibit coarse secondary phases with a reduced number density compared to coarse-grained (CG) alloys without grain refiners. Dynamic recrystallization (DRX) was enhanced at higher compression temperatures and lower strain rates in the CG and FG alloys. Both particle stimulated nucleation (PSN) and continuous dynamic recrystallization (CDRX) are enhanced in the FG alloys, resulting in decreased peak stress values (indicating DRX onset) at 450°C. The peak stress of the FG alloys was higher at 300-400°C than that of the CG alloys because of grain refinement hardening over softening by enhanced DRX.
Go to article

Authors and Affiliations

Junho Lee
1
ORCID: ORCID
Namhyuk Seo
1
ORCID: ORCID
Sang-Hwa Lee
2
ORCID: ORCID
Kwangjun Euh
2
ORCID: ORCID
Singon Kang
3
ORCID: ORCID
Seung Bae Son
1 4
ORCID: ORCID
Seok-Jae Lee
1 4
ORCID: ORCID
Jae-Gil Jung
1 4
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju 54896, Republic of Korea
  2. Korea Institute of Materials Science, Advanced Metals Division, Changwon 51508, Republic of Korea
  3. Dong-A University, Department of Materials Science And Engineering, Busan 49315, Republic of Korea
  4. Jeonbuk National University, Research Center for Advanced Materials Development, Jeonju 54896, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This study explores the hydrogen embrittlement behaviour of two Ni-based superalloys using electrochemical hydrogen charging. Two types of tensile specimens with different geometry for the Haynes 617 and Hastelloy X alloys were electrochemically hydrogen-charged, and then a slow strain rate test was conducted to investigate the hydrogen embrittlement behaviour. Unlike the ASTM standard specimens, two-step dog-bone specimens with a higher surface-area-to-volume ratio showed higher sensitivity to hydrogen embrittlement because hydrogen atoms are distributed mostly on the surface area. On the other hand, the Haynes 617 alloy had a lower hydrogen embrittlement resistance than that of the Hastelloy X alloy due to its relatively large grain size and the presence of precipitates at grain boundaries. The Haynes 617 alloy primarily showed an intergranular fracture mode with cracks from the slip band, whereas the Hastelloy X alloy exhibited a combination of transgranular and intergranular fracture behavior under hydrogen-charged conditions.
Go to article

Authors and Affiliations

Jae-Yun Kim
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Depart ment of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Zinc oxide is considered an outstanding photocatalyst candidate, but its low photo-corrosion resistance is a problem to be solved. In the ZnO-ZnS core-shell structure, ZnS acts as a protective layer for the ZnO core, and thus, it can enhance stability and long-term performance. The ZnO-ZnS core-shell structure is synthesized into various nanoscale morphologies with high specific surface areas to improve photocatalytic efficiency. However, they are easily agglomerated and are hard to separate from reaction media. In this study, micro-sized bumpy spheres of ZnO-ZnS core-shell structure were prepared via facile chemical transformation of as-prepared ZnO. After sulfurization of the ZnO template, it was confirmed through SEM, TEM, EDS, and XPS analysis that a uniform ZnS shell layer was formed without significant change in the initial ZnO morphology. The ZnO-ZnS core-shell microsphere has shown superior efficiency and stability in the photocatalytic degradation of Rhodamine B compared with pristine ZnO microspheres
Go to article

Authors and Affiliations

Hee Yeon Jeon
1
ORCID: ORCID
Mijeong Park
1
ORCID: ORCID
Seungheon Han
1
ORCID: ORCID
Dong Hoon Lee
1
ORCID: ORCID
Young-In Lee
2
ORCID: ORCID

  1. Seoul National University Of Science and Technology, Department Of Materials Science and Engineering, Seoul 01811, Republic Of Korea
  2. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, Ag-impregnated silica aerogel composites were fabricated via wet impregnation. In this approach, silver salt was reduced with ethylene glycol in the presence of polyvinylpyrrolidone (PVP) at reaction temperature 80°C. PVP was used as a capping agent to protect the Ag nanoparticles (NPs) from agglomeration. Wet impregnation was used to synthesize the Ag/SiO2 composite by combining the reduction of AgNO3 with a silica aerogel slurry. Experimental results showed that the AgNO3 concentration and PVP: AgNO3 ratio had an active influence on the growth of Ag NPs on silica surfaces. The X-ray diffraction (XRD) patterns of the composite material showed no imprints of impurities or parasitic materials except for Ag and SiO2. Scanning electron microscopy (SEM) images revealed that the Ag NPs were well impregnated into the porous silica aerogel structure. It was found that SiO2 aerogel surfaces were homogeneously surrounded by the Ag NPs.
Go to article

Authors and Affiliations

Pratik S. Kapadnis
1
Kyungsun Kim
1
Hyung-Ho Park
2
Haejin Hwang
1
ORCID: ORCID

  1. Inha university, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
  2. Yonsei University, Department of Materials Science and Engineering, Seoul 03722, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

We investigated the influence of steel surface properties on the wettability of zinc (Zn). Our main objective is to address the selective oxidation of solute alloying elements and enhance the wetting behavior of Zn on advanced high strength steel (AHSS) by employing an aluminum (Al) interlayer through the physical vapor deposition technique. The deposition of an Al interlayer resulted in a decrease in contact angle and an increase in spread width as the molten Zn interacted with the Al interlay on the steel substrate. Importantly, the incorporation of an Al interlayer demonstrated a significant improvement in wettability by substantially increasing the work of adhesion compared to the uncoated AHSS substrate.
Go to article

Authors and Affiliations

Srinivasulu Grandhi
1
Kwang-Hyeok Jin
1
Min-Su Kim
ORCID: ORCID
Dong-Joo Yoon
2
Seung-Hyo Lee
3
Min-Suk Oh
4
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering and Research Center for Advanced Materials Developm ent, Jeonju,Republic of Korea
  2. Sunchon National University, Center for Practical Use of Rare Materials, Sunchon, Republic of Korea
  3. Korea Maritime & Ocean University, Department of Ocean Advanced of Materials Convergence Engineering, Pusan, Republic of Korea
  4. Jeonbuk National University, Division of Advanced Materials Engineering and Research Center for Advanced Materials Developm ent, Jeonju, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The HAp (hydroxyapatite) excellent ion exchange resin and has adsorption properties of heavy metals and organic materials. It is used as an adsorption material and as an organic drug-delivery material due to these characteristics, that are essentially controlled the specific surface area. In this paper, the specific surface area was controlled by adding polymers of polyvinylpyrrolidone (PVP), polystyrene beads (PSB), and polyethylene glycol (PEG). Through the USP process, the HAp powder is able to synthesize into the spherical shape, specific surface area, and pore were controlled by the properties of the polymers.
Go to article

Authors and Affiliations

Jeongha Lee
1
ORCID: ORCID
Kun-Jae Lee
1
ORCID: ORCID

  1. Dankook University, Departm ent of Energy Engineering, Cheonan 31116, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

A pure molybdenum (Mo) coating layer was manufactured by using the atmospheric plasma spray (APS) process and its wear and corrosion characteristics were investigated in this study. A Mo coating layer was prepared to a thickness of approximately 480 μm, and it had sound physical properties with a porosity of 2.9% and hardness of 434 Hv. Room temperature dry wear characteristics were measured through a ball-on-disk test under load conditions of 5 N, 10 N and 15 N. Based on the coefficient of friction graph at 5 N and 10 N, the oxides formed during wear functioned as a wear lubricant, thereby confirming an increase in wear resistance. However, at 15 N, wear behavior changed, and wear occurred due to splat pulling out. A potentiodynamic polarization test was conducted under an artificial seawater atmosphere, and Ecorr and Icorr measured 0.717 V and 7.2E-5 A/cm2, respectively. Corrosion mainly occurred at the splat boundary and pores that were present in the initial state. Based on the findings above, the potential application of APS Mo coating material was also discussed.
Go to article

Authors and Affiliations

Yu-Jin Hwang
1
ORCID: ORCID
Yurian Kim
1
ORCID: ORCID
Soon-Hong Park
2
ORCID: ORCID
Sung-Cheol Park
3
ORCID: ORCID
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
  2. POSCO Technical Research Laboratories, Gwangyang 57807, Republic of Korea
  3. Surface Treatment R&D Group, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Inconel 625 is typically used in extreme environments due to excellent mechanical properties such as high strength, corrosion resistance, abrasion resistance and low-temperature toughness. When manufacturing a hot forged flange with a thick and complex shape, the cooling rate varies depending on the location due to the difference in thermal gradient during the cooling process after hot forging. In this study, to evaluate the microstructure and mechanical properties of Inconel 625 according to the cooling rate, we performed heat treatment at 950°C, 1050°C, and 1150°C for 4 hours followed by water cooling. Additionally, temperature data for each location on the flange were obtained using finite element method (FEM) simulation for each heat treatment temperature, revealing a discrepancy in the cooling rate between the surface and the center. Therefore, the correlation between microstructure and mechanical properties according to cooling rate was investigated.
Go to article

Authors and Affiliations

Minha Park
1
ORCID: ORCID
Gang Ho Lee
2
ORCID: ORCID
Hyo-Seong Kim
2
ORCID: ORCID
Byoungkoo Kim
1
ORCID: ORCID
Sanghoon Noh
3
ORCID: ORCID
Byung Jun Kim
1
ORCID: ORCID

  1. Energy System Group, Korea Institute of Industrial Technology, Busan 46938, Republic of Korea
  2. Energy System Group, Korea Institute of Industrial Technology, Busan 46938, Republic of Korea; Pukyong National University, Department of Materials Science and Engineering, Busan 48513, Republic of Korea
  3. Pukyong National University, Department of Materials Science and Engineering, Busan 48513, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

API X70 steel requires high strength and toughness for safety in extreme environments like high pressure and low temperature. Submerged Arc Welding (SAW ) is effective for manufacturing thick steel pipes. However, the welding heat input during SAW alters the microstructure and mechanical properties of the heat affected zone (HAZ). Therefore, investigating the correlation between microstructure and mechanical properties in welded X70 pipes is important to address potential degradation of HAZ and weld metal (WM). In this study, post weld heat treatment (PWHT) was performed to improve mechanical properties of HAZ and WM and to reduce residual stress caused by the welding process. We performed PWHT at 640°C for 15 hours and followed by air cooling. After heat treatment, we observed the microstructure through OM and SEM analysis, and investigated the mechanical properties through tensile test, hardness test, and Charpy impact test.
Go to article

Authors and Affiliations

Minha Park
1
ORCID: ORCID
Gang Ho Lee
2
ORCID: ORCID
Gwangjoo Jang
1
Hyoung-Chan Kim
1
Byoungkoo Kim
1
ORCID: ORCID
Byung Jun Kim
1
ORCID: ORCID

  1. Energy System Grou, Korea Institute of Industrial Technology, 46938, Busan, Republic of Korea
  2. Energy System Grou, Korea Institute of Industrial Technology, 46938, Busan, Republic of Korea; Pukyong National University, Department of Materials Science and Engineering, 48513, Busan, Republic of Korea

This page uses 'cookies'. Learn more