Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The advancement of contemporary internal combustion engine technologies necessitates not only design enhancements but also the exploration of alternative fuels or fuel catalysts. These endeavors are integral to curbing the emission of hazardous substances in exhaust gases. Most contemporary catalyst additives are of complex chemical origins, introduced into the fuel during the fuel preparation stage. Nonetheless, none of these additives yield a significant reduction in fuel consumption. The research endeavors to develop the fuel system of a primary marine diesel engine to facilitate the incorporation of pure hydrogen additives into diesel fuel. Notably, this study introduces a pioneering approach, employing compressed gaseous hydrogen up to 5 MPa as an additive to the principal diesel fuel. This method obviates the need for extensive modifications to the ship engine fuel equipment and is adaptable to modern marine power plants. With the introduction of modest quantities of hydrogen into the primary fuel, observable shifts in the behavior of the fuel equipment become apparent, aligning with the calculations outlined in the methodology. The innovative outcomes of the experimental study affirm that the mass consumption of hydrogen is contingent upon the hydrogen supply pressure, the settings of the fuel equipment, and the structural attributes of the fuel delivery system. The modulation of engine load exerts a particularly pronounced influence on the mass admixture of hydrogen. The proportion of mass addition of hydrogen in relation to the pressure of supply (ranging from 4–12 MPa) adheres to a geometric progression (within the range of 0.04–0.1%). The application of this technology allows for a reduction in the specific fuel consumption of the engine by 2–5%, contingent upon the type of fuel system in use, and concurrently permits an augmentation in engine power by up to 5%. The resultant economic benefits are estimated at 1.5–4.2% of the total fuel expenses. This technology is applicable across marine, automotive, tractor, and stationary diesel engines. Its implementation necessitates no intricate modifications to the engine design, and its utilization demands no specialized skills. It is worth noting that, in addition to hydrogen, other combustible gases can be employed.
Go to article

Authors and Affiliations

Denys Shalapko
1
Mykola Radchenko
1
Anatoliy Pavlenko
2
ORCID: ORCID
Roman Radchenko
1
Andrii Radchenko
1
Maxim Pyrysunko
1

  1. Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine
  2. Kielce University of Technology, Department of Building Physics and Renewable Energy, Aleja Tysia˛clecia Pan´stwa Polskiego 7,25-314, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

An as-cast aluminum billet with a diameter of 100 mm has been successfully prepared from aluminum scrap by using direct chill (DC) casting method. This study aims to investigate the microstructure and mechanical properties of such as-cast billets. Four locations along a cross-section of the as-cast billet radius were evaluated. The results show that the structures of the as-cast billet are a thin layer of coarse columnar grains at the solidified shell, feathery grains at the half radius of the billet, and coarse equiaxed grains at the billet center. The grain size tends to decrease from the center to the surface of the as-cast billet. The ultimate tensile strength (UTS) and the hardness values obtained from this research slightly increase from the center to the surface of the as-cast billet. The distribution of Mg, Fe, and Si elements over the cross-section of the as-cast billet is inhomogeneous. The segregation analysis shows that Si has negative segregation towards the surface, positive segregation at the middle, and negative segregation at the center of the as-cast billet. On the other hand, the Mg element is distributed uniformly in small quantities in the cross-section of the as-cast billet.
Go to article

Bibliography

[1] Raabe, D., Ponge, D., Uggowitzer, P., Roscher, M., Paolantonio, M., Liu, C., Antrekowitsch, H., Kozeschnik, E., Seidmann, D., Gault, B., De Geuser, F., Dechamps, A., Hutchinson, C., Liu, C., Li, Z., Prangnell, P., Robson, J., Shanthraj, P., Vakili, S. & Pogatscher, S. (2022). Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science. 128, 1-150, 100947. DOI:10.1016/j.pmatsci.2022.100947.
[2] Jamaly, N., Haghdadi, N. & Phillion, A.B. (2015). Microstructure, macrosegregation, and thermal analysis of direct chill cast AA5182 aluminum alloy. Journal of Materials Engineering and Performance. 24, 2067-2073. DOI: 10.1007/s11665-015-1480-7.
[3] Vieth, P., Borgert, T., Homberg, W. & Grundmeier, G. (2022). Assessment of mechanical and optical properties of Al 6060 alloy particles by removal of contaminants. Advanced Engineering Materials. 25(3), 2201081. DOI: 10.1002/adem.202201081.
[4] Wagstaff, R.S., Wagstaff, B.R. & Allanore, A. (2017). Tramp element accumulation and its effects on secondary phase particles. The Minerals, Metals & Materials Society. 1097-1103. DOI: 10.1007/978-3-319-51541-0.
[5] Soo, V.K., Peeters, J., Paraskevas, D., Compston, P., Doolan, M. & Duflou, J.R. (2018). Sustainable aluminium recycling of end-of-life products: A joining techniques perspective. Journal of Cleaner Production. 178, 119-132. DOI: 10.1016/j.jclepro.2017.12.235.
[6] Al-Helal, K., Patel, J.B., Scamans, G.M. & Fan, Z. (2020). Direct chill casting and extrusion of AA6111 aluminum alloy formulated from taint tabor scrap. Materials. 13(24), 5740, 1-11. DOI: 10.3390/ma13245740.
[7] Graedel, T.E., Allwood, J., Birat, J.P., Buchert, M., Hagelüken, C., Reck, B.K., Sibley, S.F. & Sonnemann, G. (2011). What do we know about metal recycling rates? Journal of Industrial Ecology. 15(3), 355-366. DOI: 10.1111/j.1530-9290.2011.00342.x.
[8] Silva, M.S., Barbosa, C., Acselrad, O. & Pereira, L.C. (2004). Effect of chemical composition variation on microstructure and mechanical properties of AA 6060 aluminum alloy. Journal of Materials Engineering and Performance. 13, 129–134. DOI: 10.1361/10599490418307.
[9] Al-Helal, K., Lazaro-Nebreda, Patel, J. & Scamans, G. (2021). High-shear de-gassing and de-ironing of an aluminum. Recycling. 6 (66), 2-10. https://doi.org/10.1111/j.1530-9290.2011.00342.x.
[10] Zhang, L., Gao, J., Damoah, L.N.W. & Robertson, D.G. (2012). Removal of iron from aluminum: A review. Mineral Processing and Extractive Metallurgy Review. 33(2), 99-157. DOI: 10.1080/08827508.2010.542211.
[11] Zhang, L., Lv, X., Torgerson, A.T. & Long, M. (2011). Removal of impurity elements from molten aluminum: A review. Mineral Processing and Extractive Metallurgy Review. 32(3), 150-228. DOI: 10.1080/08827508. 2010.483396.
[12] Paraskevas, D., Kellens, K., Dewulf, W. & Duflou, J.R. (2015). Environmental modelling of aluminium recycling: A Life Cycle Assessment tool for sustainable metal management. Journal of Cleaner Production. 105, 357-370. DOI: 10.1016/j.jclepro.2014.09.102.
[13] Eskin, D.G., Savran, V.I. & Katgerman, L. (2005). Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy. Metallurgical and Materials Transactions A. 36, 1965-1976. DOI: 10.1007/s11661-005-0059-6.
[14] Nadella, R., Eskin, D.G., Du, Q. & Katgerman, L. (2008). Macrosegregation in direct-chill casting of aluminium alloys. Progress in Materials Science. 53(3), 421-480. DOI: 10.1016/j.pmatsci.2007.10.001.
[15] Eskin, D.G. (2014). Mechanisms and Control of Macrosegregation in DC Casting. Light Metals 2014. 855-860. DOI: 10.1002/9781118888438.ch143.
[16] Mortensen, D., M’Hamdi, M., Ellingsen, K., Tveito, K., Pedersen, L. & Grasmo, G. (2014). Macrosegregation modelling of DC-casting including grain motion and surface exudation. Light Metals 2014. 867-872. DOI: 10.1002/9781118888438.ch145.
[17] Jolly, M., & Katgerman, L. (2022). Modelling of defects in aluminium cast products. Progress in materials science. 123, 1-39. DOI: 10.1016/j.pmatsci.2021.100824
[18] Suyitno, Kool, W.H. & Katgerman, L. (2005). Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 36(6), 1537-1546. DOI: 10.1007/s11661-005-0245-6.
[19] Eskin, D.G., Zuidema, J., Savran, V.I. & Katgerman, L. (2004). Structure formation and macrosegregation under different process conditions during DC casting. Materials Science and Engineering A. 384(1-2), 232-244. DOI: 10.1016/j.msea.2004.05.066.
[20] Lalpoor, M., Eskin, D. G., Ruvalcaba, D., Fjær, H.G., Ten Cate, A., Ontijt, N. & Katgerman, L. (2011). Cold cracking in DC-cast high strength aluminum alloy ingots: An intrinsic problem intensified by casting process parameters. Materials Science and Engineering A. 528(6), 2831-2842. DOI: 10.1016/j.msea.2010.12.040.
[21] Grandfield, J.F., Eskin, D.G, Bainbridge, I.F. (2013). Direct-chill casting of light alloys. United States of America: John Wiley & Sons, Inc., Hoboken, New Jersey. DOI: 10.1002/9781118690734.
[22] Wang, R., Zuo, Y., Zhu, Q., Liu, X. & Wang, J. (2022). Effect of temperature field on the porosity and mechanical properties of 2024 aluminum alloy prepared by direct chill casting with melt shearing. Journal of Materials Processing Technology. 307, 117687. DOI: 10.1016/j.jmatprotec. 2022.117687.
[23] Barekar, N.S., Skalicky, I., Barbatti, C., Fan, Z. & Jarrett, M. (2021). Enhancement of chip breakability of aluminium alloys by controlling the solidification during direct chill casting. Journal of Alloys and Compounds. 862, 158008. DOI: 10.1016/j.jallcom.2020.158008.
[24] ASTM E112. (2010). Standard test methods for determining average grain size E112-10. ASTM E112-10. 96(2004), 1-27. DOI: 10.1520/E0112-10.
[25] Jones, S., Rao, A.K.P., Patel, J.B., Scamans, G.M. Fan, Z. (2012). Microstructural evolution in intensively melt sheared direct chill cast Al-alloys. In the 13th International Conference on Aluminum Alloys (ICAA13) 2013, (pp. 91-96). DOI: 10.1007/978-3-319-48761-8_15.
[26] Suyitno, A., Eskin, D.G., Savran, V.I. & Katgerman, L. (2004). Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metallurgical and Materials Transactions A. 35 A(11), 3551-3561. DOI: 10.1007/s11661-004-0192-7.
[27] Turchin, A.N., Zuijderwijk, M., Pool, J., Eskin, D.G. & Katgerman, L. (2007). Feathery grain growth during solidification under forced flow conditions. Acta Materialia. 55(11), 3795-3801. DOI: 10.1016/j.actamat.2007.02.030.
[28] Liu, X., Zhu, Q., Jia, T., Zhao, Z., Cui, J. & Zuo, Y. (2020). As-cast structure and temperature field of direct-chill cast 2024 alloy ingot at different casting speeds. Journal of Materials Engineering and Performance. 29(10), 6840-6848. DOI: 10.1007/s11665-020-05140-x.
[29] Tian L., Guo, Y., Li, J., Xia, F., Liang, M. & Bai, Y.(2018) Effects of solidification cooling rate on the microstructure and mechanical properties of a cast Al-Si-Cu-Mg-Ni piston alloy. Materials. 11(7), 3-11. DOI: 10.3390/ma11071230.
[30] Suyitno. (2016). Effect of composition on the microporosity, microstructure, and macrostructure in the start-up direct-chill casting billet of Al-Cu alloys. ARPN Journal of Engineering and Applied Sciences. 11(2), 962-967. https://doi.org/10.1007/s11661-004-0192-7.
[31] Zhu, C., Zhao, Z. hao, Zhu, Q. feng, Wang, G. song, Zuo, Y. bo, & Qin, G. wu. (2022). Structures and macrosegregation of a 2024 aluminum alloy fabricated by direct chill casting with double cooling field. China Foundry. 19(1), 1-8. DOI: 10.1007/s41230-022-1030-5.
[32] Zheng, X., Dong, J. & Wang, S. (2018). Microstructure and mechanical properties of Mg-Nd-Zn-Zr billet prepared by direct chill casting. Journal of Magnesium and Alloys. 6(1), 95-99. DOI: 10.1016/j.jma.2018.01.003.
[33] Arif, A.F.M., Akhtar, S.S. & Sheikh, A.K. (2009). Effect of Al-6063 billet quality on the service life of hot extrusion die: metallurgical and statistical investigation. Journal of Failure Analysis and Prevention. 9, 253-261. DOI: 10.1007/s11668-009-9231-4.
[34] Triantafyllidis, G.K., Kiligaridis, I., Zagkliveris, D.I., Orfanou, I., Spyridopoulou, S., Mitoudi-Vagourdi, E. & Semertzidou, S. (2015). Characterization of the A6060 Al alloy mainly by using the micro-hardness vickers test in order to optimize the industrial solutionizing conditions of the as-cast billets. Material. Science and Applications. 06(01), 86-94. DOI: 10.4236/msa.2015.61011.
[35] Asensio-Lozano J., Suárez-Peña, B. & Voort, G.F.V. (2014). Effect of processing steps on the mechanical properties and surface appearance of 6063 aluminium extruded products. Materials. 7(6), 4224-4242. DOI: 10.3390/ma7064224.
[36] Založnik, M. & Šarler, B. (2005). Modeling of macrosegregation in direct-chill casting of aluminum alloys: Estimating the influence of casting parameters. Materials Science and Engineering A. 413-414, 85-91. DOI: 10.1016/j.msea.2005.09.056.
Go to article

Authors and Affiliations

Kardo Rajagukguk
1 2 4
ORCID: ORCID
Suyitno Suyitno
3 4
Harwin Saptoadi
1
I. K. Indraswari Kusumaningtyas
1
Budi Arifvianto
1 4
Muslim Mahardika
1 4

  1. Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55281, Indonesia
  2. Department of Mechanical Engineering, Institut Teknologi Sumatera (ITERA), Jl. Terusan Ryacudu, South Lampung, Lampung 35365, Indonesia
  3. Department of Mechanical Engineering, Faculty of Engineering, Universitas Tidar, Jl. Kapten Suparman 39, North Magelang, 56116, Indonesia
  4. Center for Innovation of Medical Equipment and Devices (CIMEDs), Universitas Gadjah Mada, Jl. Teknika Utara Yogyakarta 55281, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Fault diagnosis techniques of electrical motors can prevent unplanned downtime and loss of money, production, and health. Various parts of the induction motor can be diagnosed: rotor, stator, rolling bearings, fan, insulation damage, and shaft. Acoustic analysis is non-invasive. Acoustic sensors are low-cost. Changes in the acoustic signal are often observed for faults in induction motors. In this paper, the authors present a fault diagnosis technique for three-phase induction motors (TPIM) using acoustic analysis. The authors analyzed acoustic signals for three conditions of the TPIM: healthy TPIM, TPIM with two broken bars, and TPIM with a faulty ring of the squirrel cage. Acoustic analysis was performed using fast Fourier transform (FFT), a new feature extraction method called MoD-7 (maxima of differences between the conditions), and deep neural networks: GoogLeNet, and ResNet-50. The results of the analysis of acoustic signals were equal to 100% for the three analyzed conditions. The proposed technique is excellent for acoustic signals. The described technique can be used for electric motor fault diagnosis applications.
Go to article

Authors and Affiliations

Adam Glowacz
1
ORCID: ORCID
Maciej Sulowicz
1
ORCID: ORCID
Jarosław Kozik
2
ORCID: ORCID
Krzysztof Piech
2
ORCID: ORCID
Witold Glowacz
3
ORCID: ORCID
Zhixiong Li
4 5
ORCID: ORCID
Frantisek Brumercik
6
ORCID: ORCID
Miroslav Gutten
7
ORCID: ORCID
Daniel Korenciak
7
Anil Kumar
8
ORCID: ORCID
Guilherme Beraldi Lucas
9
ORCID: ORCID
Muhammad Irfan
10
ORCID: ORCID
Wahyu Caesarendra
4 11
ORCID: ORCID
Hui Lui
12
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Electrical and Computer Engineering, Department of Electrical Engineering, ul. Warszawska 24,31-155 Kraków, Poland
  2. AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of PowerElectronics and Energy Control Systems, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  3. AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of AutomaticControl and Robotics, al. A. Mickiewicza 30, 30-059 Krakw, Poland
  4. Faculty of Mechanical Engineering, Opole University of Technology, Opole 45-758, Poland
  5. University of Religions and Denomina, Qom, Iran
  6. University of Zilina, Faculty of Mechanical Engineering, Department of Design and Machine Elements, Univerzitna 1, 010 26 Zilina, Slovakia
  7. University of Zilina, Faculty of Electrical Engineering and Information Technology, 8215/1 Univerzitna, 01026 Zilina, Slovakia
  8. Wenzhou University, College of Mechanical and Electrical Engineering, Wenzhou, 325 035, China
  9. Sao Paulo State University, Department of Electrical Engineering, Av. Eng. Luís Edmundo Carrijo Coube, 14-01, Bauru, Sao Paulo, Brazil
  10. Najran University Saudi Arabia, Electrical Engineering Department, College of Engineering, Najran 61441, Saudi Arabia
  11. Faculty of Integrated Technologies, Universiti Brunei Darusalam, Jalan Tungku Link, Gadong BE1410, Brunei
  12. China Jiliang University, College of Quality and Safety Engineering, Hangzhou 310018, China

This page uses 'cookies'. Learn more