Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The amount of solid organic waste is constantly growing. This is caused by the growth of industrial and agricultural capacities, and the inefficiency of existing waste processing technologies. Biotechnologies can provide effective environmentally friendly solutions for waste treatment. Therefore, the goal of our work was to compare the efficiency of strictly anaerobic fermentation of multi-component solid organic waste with hydrogen synthesis and waste treatment with pulsed air access in batch bioreactors.During fermentation, the following parameters were controlled: pH, redox potential (Eh), concentration of dissolved organics, and the content of H2, O2, and CO2 in the gas phase. The efficiency was evaluated via the process duration, calculation of the ratio of the initial and final weight of waste (Кd), and the yield of molecular hydrogen. Obtained results revealed high efficiency of organic waste degradation in both variants. The weight of waste 83-fold and 86-fold decreased, respectively. The time required for fermentation in strictly anaerobic conditions was 4 days, whereas 7 days were required for the mode with pulsed air access. The first variant provided a 2.8-fold higher hydrogen yield (54±4,1 L/kg of waste), and the second one provided a decrease in the concentration of dissolved organic compounds in the fermentation fluid. Fermentation is the effective approach for accelerated degradation of solid organic waste. Strictly anaerobic fermentation appeared to be useful in the need to accelerate the process. The mode with the pulsed air access can provide not only degradation of solid waste but also purification of the fermentation fluid.
Go to article

Bibliography

  1. Akhlaghi, N. & Najafpour-Darzi, Gh. (2020). A Comprehensive Review on Biological Hydrogen Production, International Journal of Hydrogen Energy, 45(43), pp. 22492–22512. DOI:10.1016/j.ijhydene.2020.06.182.
  2. Alwaeli, M., Alshawaf, M. & Klasik, M., (2022). Recycling of Selected Fraction of Municipal Solid Waste as Artificial Soil Substrate in Support of the Circular Economy, Archives of Environmental Protection, 48(4), pp. 68–77. DOI:10.24425/aep.2022.143710.
  3. Bakkaloglu, S., Lowry, D., Fisher, R.E., France, J.L., Brunner, D., Chen, H. & Nisbet, E.G. (2021). Quantification of Methane Emissions from UK Biogas Plants, Waste Management, 124, pp. 82–93. DOI:10.1016/j.wasman.2021.01.011.
  4. Berezkin, V.G. (1983). Chemical Methods in Gas Chromatography. Elsevier, The Netherlands 1983.
  5. Bernstad, A.K., Cánovas, A. & Valle, R. (2017). Consideration of Food Wastage along the Supply Chain in Lifecycle Assessments: A Mini-Review Based on the Case of Tomatoes, Waste Management & Research, 35(1), pp. 29–39. DOI:10.1177/0734242X16666945.
  6. Chaijak, P. & Sola, P. (2023). ‘The New Report of Domestic Wastewater Treatment and Bioelectricity Generation Using Dieffenbachia Seguine Constructed Wetland Coupling Microbial Fuel Cell (CW-MFC)’. Archives of Environmental Protection; 2023; 49(1), pp. 57-62. DOI:10.24425/aep.2023.144737.
  7. Chen, T., Zhang, Sh. & Yuan, Z. (2020). Adoption of Solid Organic Waste Composting Products: A Critical Review, Journal of Cleaner Production, 272, 122712. DOI:10.1016/j.jclepro.2020.122712.
  8. El Bari, H., Lahboubi, N., Habchi, S., Rachidi, S., Bayssi O., Nabil N., Mortezaei Y. & Villa, R. (2022). Biohydrogen Production from Fermentation of Organic Waste, Storage and Applications, Cleaner Waste Systems, 3, 100043. DOI:10.1016/j.clwas.2022.100043.
  9. Erdiwansyah, E., Gani, A., Mamat, R., Mahidin, M., Sudhakar, K., Rosdi, S.M. & Husin H. (2022). Biomass and Wind Energy as Sources of Renewable Energy for a More Sustainable Environment in Indonesia: A Review, Archives of Environmental Protection, 48(3), pp. 57–69. DOI:10.24425/aep.2022.142690.
  10. Erses, A.S., Onay, T.T. & Yenigun, O. (2008). Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills, Bioresource technology, 99(13), pp. 5418–5426. DOI:10.1016/j.biortech.2007.11.008.
  11. Gill, S.S., Jana, A.M. & Shrivastav, A. (2014). Aerobic bacterial degradation of kitchen waste: A review, Journal of microbiology, biotechnology and food sciences, 3(6), pp. 477–483. https://office2.jmbfs.org/index.php/JMBFS/article/view/7661.
  12. Havryliuk, O., Hovorukha, V., Bida, I., Gladka G., Tymoshenko, A., Kyrylov, S., Mariychuk, R. & Tashyrev O. (2023). Anaerobic Degradation of the Invasive Weed Solidago canadensis L. (Goldenrod) and Copper Immobilization by a Community of Sulfate-Reducing and Methane-Producing Bacteria, Plants, 12(1), pp. 198–213. DOI:10.3390/plants12010198.
  13. Hovorukha, V., Tashyrev, O., Matvieieva, N., Tashyreva, H., Havryliuk, O., Bielikova O. & Sioma, I. (2019). Integrated Approach for Development of Environmental Biotechnologies for Treatment of Solid Organic Waste and Obtaining of Biohydrogen and Lignocellulosic Substrate, Environmental Research, Engineering and Management, 74(4), pp. 31–42. |DOI:10.5755/j01.erem.74.4.20723.
  14. Hovorukha, V., Tashyrev, O., Havryliuk, O. & Iastremska, L. (2020). High Efficiency of Food Waste Fermentation and Biohydrogen Production in Experimental-Industrial Anaerobic Batch Reactor, The Open Agriculture Journal, 14(1), pp. 174–186. DOI:10.2174/1874331502014010174.
  15. Katinas, V., Marčiukaitis, M., Perednis, E. & Dzenajavičienė, E.F. (2019). Analysis of Biodegradable Waste Use for Energy Generation in Lithuania, Renewable and Sustainable Energy Reviews, 101, pp. 559–567. DOI:10.1016/j.rser.2018.11.022.
  16. Khan, M.A., Ngo H.H., Guo, W., Liu, Y., Zhang, X., Guo, J., Chang, S.W., Nguyen, D.D. & Wang, J. (2018). Biohydrogen Production from Anaerobic Digestion and Its Potential as Renewable Energy, Renewable Energy, 1st International Conference on Bioresource Technology for Bioenergy, Bioproducts & Environmental Sustainability, 129, pp. 754–768. DOI:10.1016/j.renene.2017.04.029.
  17. Lim, J.X., Zhou, Y. & Vadivelu, V.M. (2020). Enhanced Volatile Fatty Acid Production and Microbial Population Analysis in Anaerobic Treatment of High Strength Wastewater, Journal of Water Process Engineering, 33, 101058. DOI:10.1016/j.jwpe.2019.101058.
  18. Marone, A., Izzo, G., Mentuccia, L., Massini, G., Paganin, P., Rosa, S., Varrone, C. & Signorini, A. (2014). Vegetable Waste as Substrate and Source of Suitable Microflora for Bio-Hydrogen Production, Renewable Energy, 68, pp. 6–13. DOI:10.1016/j.renene.2014.01.013.
  19. Mata-Alvarez, J., Macé, S. & Llabrés P. (2000). Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives, Bioresource Technology, 74(1), pp. 3–16. DOI:10.1016/S0960-8524(00)00023-7.
  20. Meegoda, J.N., Li, B., Patel, K. & Wang, L.B. (2018). A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion, International Journal of Environmental Research and Public Health, 15(10), 2224. DOI:10.3390/ijerph15102224.
  21. Parthiba Karthikeyan, O., Trably, E., Mehariya, S., Bernet, N., Wong, J.W.C. & Carrere, H. (2018). Pretreatment of Food Waste for Methane and Hydrogen Recovery: A Review, Bioresource Technology, 249, pp. 1025–1039. DOI:10.1016/j.biortech.2017.09.105.
  22. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka I. (2022). Preliminary Analysis of the State of Municipal Waste Management Technology in Poland along with the Identification of Waste Treatment Processes in Terms of Odor Emissions, Archives of Environmental Protection, 48(3), pp. 3–20. DOI:10.24425/aep.2022.142685.
  23. Rubežius, M., Venslauskas, K., Navickas, K. & Bleizgys R. (2020). Influence of Aerobic Pretreatment of Poultry Manure on the Biogas Production Process, Processes, 8(9), 1109. DOI:10.3390/pr8091109.
  24. Scarlat, N., Dallemand J.-F. & Fahl F. (2018). Biogas: Developments and Perspectives in Europe, Renewable Energy, 129, pp. 457–472. DOI:10.1016/j.renene.2018.03.006.
  25. Shimizu, S., Fujisawa, A., Mizuno, O., Kameda, T. & Yoshioka, T. (2008). Fermentative Hydrogen Production From Food Waste Without Inocula, AIP Conference Proceedings, 987(1), pp. 171–174. DOI:10.1063/1.2896968.
  26. Suslova, O., Govorukha, V., Brovarskaya, O., Matveeva, N., Tashyreva, H. & Tashyrev O. (2014). Method for Determining Organic Compound Concentration in Biological Systems by Permanganate Redox Titration, International Journal Bioautomation, 18(1), pp. 45–52. https://biomed.bas.bg/bioautomation/2014/vol_18.1/files/18.1_05.pdf
  27. Tashyrev, O., Hovorukha, V., Havryliuk, O., Sioma, I., Gladka, G., Kalinichenko, O., Włodarczyk, P., Suszanowicz, D., Zhuk, H. & Ivanov, Y. (2022). Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane, Energies, 15(3), 911. DOI:10.3390/en15030911.
  28. Wang, X. & Zhao Y.-C. (2009). A Bench Scale Study of Fermentative Hydrogen and Methane Production from Food Waste in Integrated Two-Stage Process, International Journal of Hydrogen Energy, 34(1), pp. 245–254. DOI:10.1016/j.ijhydene.2008.09.100.
  29. Wu, X., Zhu, J., Dong, C., Miller, C., Li Y., Wang, L. & Yao, W. (2009). Continuous Biohydrogen Production from Liquid Swine Manure Supplemented with Glucose Using an Anaerobic Sequencing Batch Reactor, International Journal of Hydrogen Energy, 4th Dubrovnik Conference, 34(16), pp. 6636–6645. DOI:10.1016/j.ijhydene.2009.06.058.
  30. Xiao, M. & Wu, F. (2014). A Review of Environmental Characteristics and Effects of Low-Molecular Weight Organic Acids in the Surface Ecosystem, Journal of Environmental Sciences, 26(5), pp. 935–954. DOI:10.1016/S1001-0742(13)60570-7.
  31. Xue, S., Song, J., Wang, X., Shang, Z., Sheng, C., Li, C., Zhu, Y. & Liu, J. (2020). A Systematic Comparison of Biogas Development and Related Policies between China and Europe and Corresponding Insights, Renewable and Sustainable Energy Reviews, 117, 109474. DOI:10.1016/j.rser.2019.109474.
  32. Zhang, J., Kan, X., Shen, Y., Loh, K.-C., Wang, C.-H., Dai, Y. & Tong, Y.W. (2018). A Hybrid Biological and Thermal Waste-to-Energy System with Heat Energy Recovery and Utilization for Solid Organic Waste Treatment, Energy, 152, pp. 214–222. DOI:10.1016/j.energy.2018.03.143.
Go to article

Authors and Affiliations

Vira Hovorukha
1 2
ORCID: ORCID

  1. Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
  2. Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiologyand Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

This page uses 'cookies'. Learn more