Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Lead-free ceramics of Na0.5K0.5Nb1-xSbxO3 (NKNS) and Na0.5K0.5Nb1-xSbxO3 + 0.5 mol%MnO2 (NKNS + 0.5 mol%MnO2) (0 < x < 0.06) ceramics were prepared by a conventional solid-state hot pressing method. The ceramics possess a single-phase perovskite structure with orthorhombic symmetry. Microstructural examination revealed that Mn doping of NKNS leads to improvement of densification. The cubic-tetragonal and tetragonal-orthorhombic phase transitions of NKNS shifted to higher and lower temperature, respectively after introduction of Mn ion. Besides, ferroelectric and piezoelectric properties were improved. The results were discussed in term of difference in both ionic size and electronegativity of Nb5+ and Sb5+ and improvement of densification after Mn ion doping.
Go to article

Authors and Affiliations

J. Suchanicz
Faszczowy I.
P. Czaja
J. Kusz
M. Zubko
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the influence of Mo addition on the structure and mechanical properties of the NiCoMnIn alloys have been studied. Series of polycrystalline NiCoMnIn alloys containing from 0 to 5 mas.% of Mo were produced by the arc melting technique. For the alloys containing Mo, two-phase microstructure was observed. Mo-rich precipitates were distributed randomly in the matrix. The relative volume fraction of the precipitates depends on the Mo content. The numbers of the Mo rich precipitates increases with the Mo contents. The structures of the phases were determined by the TEM. The mechanical properties of the alloys are strongly affected by Mo addition contents. Brittleness of the alloys increases with the Mo contents.

Go to article

Authors and Affiliations

K. Prusik
E. Matyja
M. Wąsik
M. Zubko
Download PDF Download RIS Download Bibtex

Abstract

The results are based on two experimental high-manganese X98MnAlSiNbTi24-11 and X105MnAlSi24-11 steels subjected to thermo-mechanical treatment by hot-rolling on a semi-industrial processing line. The paper presents the results of diffraction and structural studies using scanning and transmission electron microscopy showing the role of Nb and Ti micro-additives in shaping high strength properties of high-manganese austenitic-ferritic steels with complex carbides. The performed investigations of two experimental steels allow to explain how the change cooling conditions after thermo-mechanical treatment of the analysed steels affects the change of their microstructure and mechanical properties. The obtained results allow assessing the impact of both the chemical composition and the applied thermo-mechanical treatment technology on the structural effects of strengthening of the newly developed steels.

Go to article

Authors and Affiliations

L. Sozańska-Jędrasik
J. Mazurkiewicz
W. Borek
K. Matus
B. Chmiela
M. Zubko
Download PDF Download RIS Download Bibtex

Abstract

The Ti15Mo alloy has been studied towards long-term corrosion performance in saline solution at 37°C using electrochemical impedance spectroscopy. The physical and chemical characterization of the material were also investigated. The as-received Ti15Mo alloy exhibits a single β-phase structure. The thickness of single-layer structured oxide presented on its surface is ~4 nm. Impedance measurements revealed that the Ti15Mo alloy is characterized by spontaneous passivation in the solution containing chloride ions and formation of a double-layer structured oxide composed of a dense interlayer being the barrier layer against corrosion and porous outer layer. The thickness of this oxide layer, estimated based on the impedance data increases up to ~6 nm during 78 days of exposure. The observed fall in value of the log|Z|f = 0.01 Hz indicates a decrease in pitting corrosion resistance of Ti15Mo alloy in saline solution along with the immersion time. The detailed EIS study on the kinetics and mechanism of corrosion process and the capacitive behavior of the Ti15Mo electrode | passive layer | saline solution system was based on the concept of equivalent electrical circuit with respect to the physical meaning of the applied circuit elements. Potentiodynamic studies up to 9 V vs. SCE and SEM analysis show no presence of pitting corrosion what indicates that the Ti15Mo alloy is promising biomaterial to long-term medical applications.

Go to article

Authors and Affiliations

M. Szklarska
B. Łosiewicz
G. Dercz
M. Zubko
R. Albrecht
D. Stróż
Download PDF Download RIS Download Bibtex

Abstract

An equiatomic multi-component alloy Ni20Ti20Ta20Co20Cu20 (at. %) was obtained using vacuum arc melting. In order to characterize such an alloy, microstructure analysis has been performed using Scanning and Transmission Electron Microscopy, Electron Backscattered Diffraction, X-ray Diffraction and Energy Dispersive X-ray Spectroscopy techniques. Microstructure analysis revealed the presence of one rhombohedral and two cubic phases. Energy Dispersive X-ray Spectroscopy measurements revealed that both observed phases include five chemical elements in the structure. Using Rietveld refinement approach the lattice parameters were refined for the observed phases.

Go to article

Authors and Affiliations

K. Glowka
M. Zubko
P. Świec
K. Prusik
G. Dercz
D. Stróż
Download PDF Download RIS Download Bibtex

Abstract

A new NiTi-based multi-component Ni35Ti35Ta10Co10Cu10 (at.%) alloy was obtained by vacuum arc melting. The microstructure of the alloy has been studied using scanning and transmission electron microscopy, backscatter electron diffraction and X-ray diffraction techniques. The performed measurements showed presence of two cubic and one tetragonal phases. Energy dispersive X-ray spectroscopy analysis confirmed that all the observed phases contained all five principal elements.

Go to article

Authors and Affiliations

K. Glowka
M. Zubko
P. Świec
K. Prusik
G. Dercz
E. Matyja
D. Stróż
Download PDF Download RIS Download Bibtex

Abstract

In the presented work, two multicomponent Cr 25Z 25Co 20Mo 15Si 10Y 5 and Cr 25Co 25Zr 20Mo 15Si 10Y 5 alloys were produced from bulk chemical elements using the vacuum arc melting technique. X-ray diffraction phase analysis was used to determine the phase composition of the obtained materials. Microstructure analysis included scanning electron microscopy and energy dispersive X-ray spectroscopy techniques. The studies revealed the presence of multi-phase structures in both alloys. Elemental distribution maps confirmed the presence of all six alloying elements in the microstructure. The segregation of chemical elements was also observed. Microhardness measurement revealed that both alloys exhibited microhardness from 832(27) to 933(22) HV1.
Go to article

Authors and Affiliations

K. Glowka
1
ORCID: ORCID
M. Zubko
1
ORCID: ORCID
K. Piotrowski
1
ORCID: ORCID
P. Świec
1
ORCID: ORCID
K. Prusik
1
ORCID: ORCID
R. Albrecht
1
ORCID: ORCID
D. Stróż
1
ORCID: ORCID

  1. University of Silesia in Katowice, Institute of Materials Engeenering, Chorzów, Poland

This page uses 'cookies'. Learn more