Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Real-time monitoring of deformation of large structure parts is of great significance and the deformation

of such structure parts is often accompanied with the change of curvature. The curvature can be obtained

by measuring changes of strain, surface curve and modal displacement of the structure. However, many

factors are faced with difficulty in measurement and low sensitivity at a small deformation level. In order

to measure curvature in an effective way, a novel fibre Bragg grating (FBG) curvature sensor is proposed,

which aims at removing the deficiencies of traditional methods in low precision and narrow adjusting. The

sensor combines two FBGs with a specific structure of stainless steel elastomer. The elastomer can transfer

the strain of the structure part to the FBG and then the FBG measures the strain to obtain the curvature.

The performed simulation and experiment show that the sensor can effectively amplify the strain to the

FBG through the unique structure of the elastomer, and the accuracy of the sensor used in the experiment is

increased by 14% compared with that of the FBG used for direct measurement.

Go to article

Authors and Affiliations

Ming-Yao Liu
Shi-Guang Zhou
Han Song
Wei-Jian Zhou
Xiong Zhang
Download PDF Download RIS Download Bibtex

Abstract

Both corrosion and abrasion remove materials from some engineering components such as impact coal crusher hammers, pulverizer rings, chute liner, and rolls or molds. Intensive research has been done on improving the wear resistance of high chromium alloys, however, studies into corrosion resistance of high chromium alloys are insufficient. In order to determine the amount of ferroniobium addition in the wire to achieve the best corrosion resistance, and find out the mechanism of ferroniobium enhancing the corrosion resistance of the welding overlays, the high-Cr iron-based welding overlays with different niobium addition were fabricated by using self-made self-shielded metal-cored wires and their acidic corrosion resistance in 3.5 wt.% NaCl solution + 0.01 mol/L HCl solution were investigated by electrochemical corrosion test. The microstructure and corrosion morphology were characterized by OM, SEM, XRD and EDS. The polarization curves and values of I corr, E corr and Rc indicate the corrosion resistance is at the highest with 3.6 wt.% niobium addition, and at the lowest when the niobium addition is 10.8 wt.%. The corrosion of welding overlay occurs in the matrix of microstructure. With the increase of niobium addition from 3.6 wt.% to 10.8 wt.%, the proportion of network eutectic structure in the welding overlay is increased. Up to 10.8 wt.%, the microstructure is transformed from hypereutectic structure into eutectic one, leading to a higher acceleration of corrosion rate. When niobium addition reaches 14.4 wt.%, the welding overlay is transformed into a hypoeutectic structure. The addition of niobium element consumes carbon element in the alloy, which makes the increase of chromium content in the final solidified matrix, leading to an improvement in corrosion resistance.
Go to article

Authors and Affiliations

Dashuang Liu
1 2 3
Yucheng Wu
1
Weimin Long
2 4
Ping Wei
3
Rui Wang
3
ORCID: ORCID
Wei Zhou
1 5

  1. Hefei University of Technology, School of Material Science and Engineering, Hefei 230009, China
  2. Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001, China
  3. Jiangsu University of Science and Technology, School of Material Science and Engineering, Zhenjiang 212003, China
  4. China Innovation Academy of Intelligent Equipment (Ningbo) Co., Ltd, Ningbo 315700, China
  5. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

This page uses 'cookies'. Learn more