Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Using colloid water as a covering for explosives can improve the energy efficiency for explosive welding, while its effects on bonding properties remain unclear. Here, by employing titanium/steel as a model system, the effect of covering thickness on microstructures and mechanical properties of the bonding interface was systematically investigated. It was found that all the welds displayed wavy interfaces, and the wave size increased with increasing covering thickness. Vortices characterized by solidified melt zones surrounded by strongly deformed parent materials, were only formed for the welds performed with a covering. Moreover, with increasing covering thickness, both the tensile strength and the elongation of the titanium/steel plate decreased, and the failure mode changed from ductile to cleavage fracture, gradually. In the tensile-shear tests, all the fractures took place in titanium matrix without separation at interface, indicating that the titanium/steel interfaces had an excellent bonding strength. The micro-hardness decreased with increasing distance from the interface, and this trend was more remarkable for a thicker covering. The micro-hardness inside the solidified melt zones was far higher than that observed in strain-hardened layers of the parent metal, due to formation of hard intermetallic compounds.
Go to article

Authors and Affiliations

Fei Wang
1
Ming Yang
2

  1. Anhui University of Science and Technology State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines,Huainan, Anhui Province, China
  2. Nanjing University of Science and Technology, National Key Laboratory of Transient Physics, Nanjing, 210094, China
Download PDF Download RIS Download Bibtex

Abstract

The MEMS inclinometer integrates a tri-axis accelerometer and a tri-axis gyroscope to solve the perceived dynamic inclinations through a complex data fusion algorithm, which has been widely used in the fields of industrial, aerospace, and monitoring. In order to ensure the validity of the measurement results of MEMS inclinometers, it is necessary to determine their dynamic performance parameters. This study proposes a conical motion-based MEMS inclinometer dynamic testing method, and the motion includes the classical conical motion, the attitude conical motion, and the dual-frequency conical motion. Both the frequency response and drift angle of MEMS inclinometers can be determined. Experimental results show that the conical motions can accelerate the angle drift of MEMS inclinometers, which makes them suitable for dynamic testing ofMEMSinclinometers. Additionally, the tilt sensitivity deviation of theMEMS inclinometer by the proposed method and the turntable-based method is less than 0.26 dB.We further provide the research for angle drift and provide discussion.
Go to article

Authors and Affiliations

Qihang Yang
1
Chenguang Cai
2
Ming Yang
3
Ming Kong
1
Zhihua Liu
2
Feng Liang
4

  1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
  2. National Institute of Metrology of China, Beijing 100013, China
  3. College of Electrical Engineering, Guizhou University, Guiyang 550025, China
  4. Shenyang Aircraft Corporation, Shenyang 110031, China

This page uses 'cookies'. Learn more