Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of investigations concerning the application of zinc oxide - a wideband gap semiconductor in optical planar waveguide structures. ZnO is a promising semiconducting material thanks to its attractive optical properties. The investigations were focused on the determination of the technology of depositions and the annealing of ZnO layers concerning their optical properties. Special attention was paid to the determination of characteristics of the refractive index of ZnO layers and their coefficients of spectral transmission within the UV-VIS-NIR range. Besides that, also the mode characteristics and the attenuation coefficients of light in the obtained waveguide structures have been investigated. In the case of planar waveguides, in which the ZnO layers have not been annealed after their deposition, the values of the attenuation coefficient of light modes amount to a~ 30 dB/cm. The ZnO layers deposited on the heated substrate and annealed by rapid thermal annealing in an N2 and O2 atmosphere, are characterized by much lower values of the attenuation coefficients: a~ 3 dB/cm (TE0 and TM0 modes). The ZnO optical waveguides obtained according to our technology are characterized by the lowest values of the attenuation coefficients a encountered in world literature concerning the problem of optical waveguides based on ZnO. Studies have shown that ZnO layers elaborated by us can be used in integrated optic systems, waveguides, optical modulators and light sources.

Go to article

Authors and Affiliations

Przemysław Struk
Tadeusz Pustelny
Krystyna Gołaszewska
Michał A. Borysiewicz
Eliana Kamińska
Tomasz Wojciechowski
Anna Piotrowska
Download PDF Download RIS Download Bibtex

Abstract

The goals of this work are to design and develop a technology for fabrication and study of multifunctional properties of core/shell nanoparticles (NPs) as magnetic/luminescent markers. The new hybrid core/shell Fe3O4/Gd2O3:1% Er3+, 18% Yb3+, 2.5% Mg2+, x% Nd3+ NPs doped with different concentrations of neodymium ions, where x = 0%, 0.5%, 0.75%, 1%, 2%, 4%, were synthesized by the co-precipitation method. The NPs were characterised using XRD, TEM, SEM, EDX, confocal microscopy and photoluminescence. Fe3O4 (core) consists of several 13 nm NPs. The core/shell NPs have sizes from 220 nm to 641 nm. In this latter case, the shell thicknesses were 72, 80, and 121 nm. The upconversion efficiency properties and magnetic properties of the hybrid NPs were investigated. In the core/shell NPs, the addition of Nd3+ quenches the luminescence. The magnetic response of core/shell samples is rather paramagnetic and does not differ significantly from that registered for the shell material alone. For Gd2O3:1% Er3+, 18% Yb3+ and Fe3O4/Gd2O3:1% Er3+, 18% Yb3+, 2.5% Mg2+, 0.5% Nd3+, at 300 K, the values of the magnetization registered at ~ 40 kOe are similar and equal to ~ 5.3 emu·g−1. The survivability of the HeLa tumor cells with the presence of the core/shell NPs was investigated for 24 h. The NPs are non-toxic up to a concentration of 1000 µg·ml−1 and penetrate cells in the process of endocytosis which has been confirmed by confocal microscope studies.
Go to article

Authors and Affiliations

Izabela Kamińska
1
ORCID: ORCID
Kamil Sobczak
2
Yaroslav Zhydachevskyy
1
ORCID: ORCID
Tomasz Wojciechowski
1 3
ORCID: ORCID
Roman Minikayev 
1
ORCID: ORCID
Bożena Sikora-Dobrowolska
1
ORCID: ORCID
Sabina Lewińska
1
ORCID: ORCID
Michał Chojnacki
1 3
ORCID: ORCID
Krzysztof Fronc
1 3
ORCID: ORCID

  1. Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  2. Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw 02-089, Poland
  3. International Research Centre MagTop, al. Lotników 32/46, Warsaw 02-668, Poland

This page uses 'cookies'. Learn more