Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of this investigation was to measure the effect of contralateral acoustic stimulation (CAS) on distortion product otoacoustic emission (DPOAE) in twenty human ears, for a ratio of primary tones f2/f1 = 1.22 and a wide frequency range of f2 (1.4-9 kHz), for two intensity levels of primary tones (L1 = 60 dB SPL; L2 = 50 dB SPL and L1 = 70 dB SPL; L2 = 60 dB SPL) and two intensity levels of CAS (50 and 60 dB SPL). It was found that in the presence of CAS, in the majority of cases the DPOAE level decreased (suppression), but it might also increase (enhancement) or remain unchanged depending on the frequency. The mean suppression level of the component of the frequency fDP = 2f1 f2 might be approximated by a linearly decreasing function of the f2 frequency of primary tones. The slope of this function was negative and increased with an increase of the contralateral stimulation level. The higher was the contralateral noise level the greater was the suppression. For the fDP level below about 15 dB SPL, suppression was observed in a substantial number of measurement cases (in about 85% of all measured cases on average). When the fDP level was higher than 15 dB SPL, only suppression (not enhancement) was observed.

Go to article

Authors and Affiliations

Edward Ozimek
Andrzej Wicher
Download PDF Download RIS Download Bibtex

Abstract

To determine speech intelligibility using the test suggested by Ozimek et al. (2009), the subject composed sentences with the words presented on a computer screen. However, the number and the type of these words were chosen arbitrarily. The subject was always presented with 18, similarly sounding words. Therefore, the aim of this study was to determine whether the number and the type of alternative words used by Ozimek et al. (2009), had a significant influence on the speech intelligibility. The aim was also to determine an optimal number of alternative words: i.e., the number that did not affect the speech reception threshold (SRT) and not unduly lengthened the duration of the test. The study conducted using a group of 10 subjects with normal hearing showed that an increase in the number of words to choose from 12 to 30 increased the speech intelligibility by about 0.3 dB/6 words. The use of paronyms as alternative words as opposed to random words, leads to an increase in the speech intelligibility by about 0.6 dB, which is equivalent to a decrease in intelligibility by 15 percentage points. Enlarging the number of words to choose from, and switching alternative words to paronyms, led to an increase in response time from approximately 11 to 16 s. It seems that the use of paronyms as alternative words as well as using 12 or 18 words to choose from is the best choice when using the Polish Sentence Test (PST).
Go to article

Authors and Affiliations

Magdalena Krenz
Andrzej Wicher
Aleksander Sęk
Download PDF Download RIS Download Bibtex

Abstract

The different mechanical properties of the materials from which the tailpieces are made have a noticeable effect on the acoustic performance of the violin. These elements are made today from ebony, rosewood, boxwood, aluminium, or plastic. The aim of this study was to check the exact impact of tailpieces made of different materials on the frequency response function (FRF) of a violin’s bridge and the timbre of the instrument’s sound. For this purpose, the bridge FRF measurement was carried out, and a psychoacoustic test was conducted. The material from which the tailpiece is made to the greatest extent affects the modal frequencies in the range 530–610 Hz (mode B1+), which mainly manifested itself in a change in the instrument’s timbre in terms of the brightness factor. The study showed that the lighter the tailpiece, the darker the sound of the violin. It was also revealed that the selection of accessories affects factors such as openness, thickness, and overall quality of the sound.
Go to article

Authors and Affiliations

Adam Łapiński
1
Ewa Skrodzka
2
ORCID: ORCID
Andrzej Wicher
2
ORCID: ORCID

  1. The Ignacy Jan Paderewski Academy of Music in Poznan Poznan, Poland
  2. Department of Acoustics, Faculty of Physics Adam Mickiewicz University
Download PDF Download RIS Download Bibtex

Abstract

Background: Hearing loss caused by excessive exposure to noise is one of the most common health risks for employees. One solution for noise reduction is the use of hearing protectors, which is a very effective method for protecting hearing from the workplace noise. In order to obtain better attenuation efficiency, custom moulded earplugs can be equipped with a suitable acoustic filter. The effectiveness of the hearing protectors’ attenuation is based on real measurement of hearing thresholds for normal hearing people with and without hearing protectors. However, this is a time consuming process, and the obtained values are characterised by quite large inter-individual variability. The optimal solution is to measure the attenuation characteristics based on the objective method (without the presence of the subject), the results of which will be in accordance with the results of subjective tests. Therefore, the main purpose of the research in this work was to measure the attenuation characteristics of the self-designed custom moulded earplugs with and without acoustic filters through the use of subjective and objective methods, and to compare the results in terms of the research methods.

Methods: Measurements of the acoustic attenuation obtained by custom moulded earplugs with designed F1, F2, and F3 acoustic filters (internal diameters dF1 = 1:25 mm, dF2 = 0:85 mm, and dF3 = 0:45 mm), as well as full insert earplugs (without any acoustic filters) were carried out using two methods: objective and subjective. The objective measurements were carried out in an anechoic chamber. The artificial head (High-frequency Head and Torso Simulator Brüel & Kjær Type 5128) was located at a distance of 3 m, directly opposite the loudspeaker. The test signal in the measurements was pink noise – in the frequency range up to 12.5 kHz and the level 85, 90, and 95 dB. The hearing protectors with and without acoustic filters were mounted in the Head and Torso Simulator which was connected with Pulse System Brüel & Kjær. Five normal hearing subjects participated in the subjective measurements. A pink noise signal was used for one-third octave bands: 125, 250, 500, 1000, 2000, 4000, and 8000 Hz. The attenuation value was defined as the difference (in dB) between the hearing threshold of the test signal with a hearing protector and the hearing threshold determined without a hearing protector.

Results: The results of the objective method proved that in addition to the significant impact of frequency on the attenuation values, the type of filter used in custom moulded earplugs also had a significant effect. In addition, the results of the objective method showed that in the whole frequency range the highest attenuation values are shown by the full earplugs, achieving slightly above 45 dB for frequency of 8 kHz. The attenuation values obtained from subjective measurements also confirmed that both the frequency and type of filter significantly affect the attenuation values of the tested hearing protectors.

Conclusions: The results of this study did not confirm the hypothesis that the measurement method had no significant effect on the attenuation characteristics of self-designed custom moulded earplugs with different types of acoustic filters. The largest differences in attenuation values between the type of measurement methods occur for the low frequency band (250 Hz) and for higher frequencies (4000 Hz mainly). The change of the internal diameter of the F1 filter from 1.25 mm to 0.85 mm (F2 filter) did not significantly affect the attenuation characteristics.
Go to article

Authors and Affiliations

Roman Gołębiewski
1
Andrzej Wicher
1
ORCID: ORCID
Artur Duraj
1
Milena Kaczmarek-Klinowska
1
Karina Mrugalska-Handke
1

  1. Department of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland

This page uses 'cookies'. Learn more