Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study was aimed to develop an indirect enzyme-linked immunosorbent assay (ELISA), which can detect specifically Feline herpesvirus type 1 (FHV-1). The primers were designed based on the conserved sequence of FHV-1 glycoprotein B gene. The recombinant protein with reactogenicity was purified as coating antigen of the assay. The indirect ELISA, characterized by high sensitivity showed no cross-reaction with two types of feline virus, had detection limit at 1:2000 dilution. The positive rate of the assay, according to the determined cutoff value (0.25), was basically consistent with Feline Herpes Virus Antibody ELISA kit. In conclusion, the indirect ELISA with high repeatability and reproducibility can be used for detecting FHV-1, and can provide necessary support to related research.

Go to article

Authors and Affiliations

Y. Tan
G. Dong
J. Niu
Y. Guo
S. Yi
M. Sun
K. Wang
G. Hu
Download PDF Download RIS Download Bibtex

Abstract

A high performance distributed sensor system with multi-intrusions simultaneous detection capability based on phase sensitive OTDR (Φ−OTDR) has been proposed and demonstrated. To improve system performance, three aspects have been investigated. Firstly, a model of one−dimensional impulse response of backscattered light and a Monte Carlo method have been used to study how the laser line width affects the system performance. Theoretical and experimental results show that the performances of the system, especially the signal−noise−ratio (SNR), decrease with the broadening of laser linewidth. Secondly, a temperature−compensated fibre Bragg grating with a 3 dB linewidth of 0.05 nm and a wavelength stability of 0.1 pm has been applied as an optical filter for effective denoising. Thirdly, a novel interrogation method for multi−intrusions simultaneous detection is proposed and applied in data denoising and processing. Consequently, benefiting from the three−in−one improvement, a high performance Φ−OTDR has been realized and four simultaneous applied intrusions have been detected and located at the same time along a 14 km sensing fibre with a spatial resolution of 6 m and a high SNR of 16 dB. To the best of our knowledge, this is the most multifunctional Φ−OTDR up to now and it can be used for perimeter and/or pipeline intrusion real−time monitoring.

Go to article

Authors and Affiliations

Y. Zhan
Q. Yu
K. Wang
F. Yang
Y. Kong
X. Zhao
Download PDF Download RIS Download Bibtex

Abstract

In order to understand infection of avian influenza A virus (AIV) and canine distemper virus (CDV) in the Siberian Tiger in Northeast China, 75 Siberian Tiger serum samples from three cap- tive facilities in northeastern China were collected. AIV and CDV antibody surveillance was test- ed by using hemagglutination inhibition and serum neutralization methods. The results showed that the seroprevalence of H5 AIV, H9 AIV and CDV was respectively 9.33% (7/75), 61.33% (46/75) and 16% (12/75). In the 1<years <2 and > 5 year-old group, the seroprevalence of the H9 AIV was 24% and 80% (P < 0.01), and the CDV seroprevalence was 6% and 36% (P < 0.01), respectively. It was demonstrated that 3 (4%) out of 75 serum samples were AIV+CDV seropos- itive, with 2.67% (2/75) in H9+AIV and 1.33% (1/75) in H5+H9+AIV. To our knowledge, this is the first report of AIV and CDV seroprevalence in Siberian Tigers in China, which will provide base-line data for the control of AIV and CDV infection in Siberian Tigers in China.

Go to article

Authors and Affiliations

K. Wang
H. Wang
N. Feng
Y. Zhao
Y. Gao
G. Hu
X. Xia
Download PDF Download RIS Download Bibtex

Abstract

MDAP-2 is a new antibacterial peptide with a unique structure that was isolated from house- flies. However, its biological characteristics and antibacterial mechanisms against bacteria are still poorly understood. To study the biological characteristics, antibacterial activity, hemolytic activi- ty, cytotoxicity to mammalian cells, and the secondary structure of MDAP-2 were detected; the results showed that MDAP-2 displayed high antibacterial activity against all of the tested Gram-negative bacteria. MDAP-2 had lower hemolytic activity to rabbit red blood cells; only 3.4% hemolytic activity was observed at a concentration of 800μg/ml. MDAP-2 also had lower cytotoxicity to mammalian cells; IC50 values for HEK-293 cells, VERO cells, and IPEC-J2 cells were greater than 1000 μg/ml. The circular dichroism (CD) spectra showed that the peptide most- ly has α-helical properties and some β-fold structure in water and in membrane-like conditions. MDAP-2 is therefore a promising antibacterial agent against Gram-negative bacteria. To deter- mine the antibacterial mechanism(s) of action, fluorescent probes, flow cytometry, and transmis- sion electron microscopy (TEM) were used to study the effects of MDAP-2 on membrane perme- ability, polarization ability, and integrity of Gram-negative bacteria. The results indicated that the peptide caused membrane depolarization, increased membrane permeability, and destroyed membrane integrity. In conclusion, MDAP-2 is a broad-spectrum, lower hemolytic activity, and lower cytotoxicity antibacterial peptide, which is mainly effective on Gram-negative bacteria. It exerts its antimicrobial effects by causing bacterial cytoplasm membrane depolarization, increas- ing cell membrane permeability and disturbing the membrane integrity of Gram-negative bacte- ria. MDAP-2 may offer a new strategy to for defense against Gram-negative bacteria.

Go to article

Authors and Affiliations

Z. Pei
X. Ying
Y. Tang
L. Liu
H. Zhang
S. Liu
D. Zhang
K. Wang
L. Kong
Y. Gao
H. Ma

This page uses 'cookies'. Learn more