Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel low-complexity soft demapping algorithm for two-dimensional non-uniform spaced constellations (2D-NUCs) and massive order one-dimensional NUCs (1D-NUCs). NUCs have been implemented in a wide range of new broadcasting systems to approach the Shannon limit further, such as DVB-NGH, ATSC 3.0 and NGB-W. However, the soft demapping complexity is extreme due to the substantial distance calculations. In the proposed scheme, the demapping process is classified into four cases based on different quadrants. To deal with the complexity problem, four groups of reduced subsets in terms of the quadrant for each bit are separately calculated and stored in advance. Analysis and simulation prove that the proposed demapper only introduces a small penalty under 0.02dB with respect to Max-Log-MAP demapper, whereas a significant complexity reduction ranging from 68.75% to 88.54% is obtained.

Go to article

Authors and Affiliations

Chen Wang
Fang Wang
Mingqi Li
Jinfeng Tian
Download PDF Download RIS Download Bibtex

Abstract

Based on the test and observation of the desert hinterland wind field, combined with the numerical simulation of Fluent wind-sand two-phase flow, the sand resistance performances of comprehensive protection in the desert hinterland under strong wind environment are researched. The transient wind speed and wind direction around the comprehensive protection facility are measured by two 3D ultrasonic anemometers on the highway in the desert hinterland, and the initial wind speed of the sand flow is provided for the numerical simulation boundary. The sedimentary sand particles around the comprehensive protection facility are collected for particle size analysis, and the particle size distributions of sedimentary sand particles at different locations are obtained. Numerical models of high vertical sand barriers, grass checkered sand barriers and roadbeds are established by Fluent, the wind-sand flow structures around the comprehensive protection facilities and desert hinterland highway under the strong wind environment are obtained, and the influence laws of the comprehensive protection facilities on the movement of wind-sand flow and sand deposition characteristics are obtained. The study found that the comprehensive protection facilities disturbed the wind and sand flow, and there are significant airflow partitions around the comprehensive protection facilities. The wind speed decreases rapidly after the wind-sand flows through the high vertical sand barrier; the wind-sand flow rises at the end of the high vertical sand barrier. When the wind-sand flow moves around the grass checkered sand barrier, the wind speed has dropped to the range of 0–3 m/s, and the wind speed near the ground by the grass checkered sand barrier is further reduced. Due to the existence of the concave surface of the grass grid, there are small vortices inside the grass grid sand barrier. Large sand particles are mainly deposited on the windward side and inside of high vertical sand barriers. The grass checkered sand barrier forms a stable concave surface to generate backflow, which can ensure that the sand surface does not sand itself in a strong wind environment, and can also make a small amount of sand carried in the airflow accumulate around the groove of the grass checkered sand barrier. The numerical simulation results are consistent with the measured results, and the comprehensive protection measures have achieved good sand control effects.
Go to article

Authors and Affiliations

Wenhua Yin
1 2
ORCID: ORCID
Xu Wang
3
ORCID: ORCID
Yongxiang Wu
2
ORCID: ORCID
Fang Wang
2
ORCID: ORCID

  1. Lanzhou Jiaotong University, Civil Engineering College, Nanzhou, 353000, China
  2. Ningxia Highway Survey and Design Insitute Co., Ltd, Yinchuan, 750001, China
  3. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China

This page uses 'cookies'. Learn more