Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Authors, mostly specialists on rehabilitation and orthopedic surgery prove that arthrofibrosis is a commonly overlooked phenomenon, which may lead to serious limitation in the range of movement, leading to limitation in patients quality of functioning. The main goal of this article is to emphasize the importance of understanding a such complex condition. Non typical patomechanism, lack of biomarkers dedicated to this dysfunction and general lack of under-standing in this pathology causes that risk factors and the most effective strategies remain vastly unknown. Pathophysiology of the arthrofibrosis in the joints is definitely multifactorial, but intense production of collagen seems to be the main factor. Most modern pharmacological methods concentrate on the regula-tion of collagen fiber production and reducing the inflammation. Inflammation from joint contractures stimulates the proliferation of activated cells that results in the production of extracellular matrix macromolecules to form fibrotic tissue that is deposited into the capsule, thereby resulting in fibrosis.
Lack of unified classification scale is caused by relatively high variation of the functions fulfilled by particular joints and each treatment plan should be constructed individually. Quality of surgical treatment and physical therapy play a major role in both prevention and treatment of such complex condition as arthrofibrosis.
Both iatrogenic mistakes and overly aggressive manual therapy are some of main factors increasing the risk of this pathological condition. Introducing properly conducted physical therapy treatment in the early stage is crucial to main the range of movement and preventing this significant problem.
Go to article

Authors and Affiliations

Andrzej Walocha
1
Bartosz Rutowicz
2
Wojciech Przybycień
2
Michał Zarzecki
2
Michał Kłosiński
2
Paweł Depukat
2
Bernard Solewski
2
Ewa Mizia
2
Anna Gil
2
Ewa Walocha
3

  1. Boom Boxing Studio, Kraków, Poland
  2. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  3. Laboratory of Nursing Theory and Fundamentals, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

There are only very few studies on the anatomy of the deep brachial artery — DBA (arteria profunda brachii), both regarding its course, branching pattern and contribution to the cubital rete. Most of the textbooks are based on data which remain unchanged for years. The aim of this article was to summarize the current knowledge on this vessel, based on the anatomical and clinical studies and other sources available including also own cadaveric study. We tried to present also some controversies regarded to the nomenclature of the branches of the DBA.
Go to article

Bibliography

1. Standring S.: Gray’s Anatomy. The Anatomical Basis of Clinical Practice. Churchill Livingstone Elsevier 2008. ISBN 978-0-8089-2371-8.
2. Spodnik J.H.: Polsko angielsko łacińskie mianownictwo anatomiczne. Edra, Urban & Partner, Wrocław 2017. ISBN 978-83-65625-53-3.
3. Aleksandrowicz R., Gołąb B., Narkiewicz O.: Mianownictwo anatomiczne — wydanie V. PZWL Warszawa 1989. ISBN 83-200-1311-9.
4. Kahn C.I., MacNeil M., Fanola C.L., Whitney E.R.: Complex arterial patterning in an anatomical donor. Translational Research in Anatomy. 2018 Sept; 12: 11–19; https://doi.org/10.1016/j.tria.2018.06.001
5. Żytkowski A., Tubbs R.S., Iwanaga J., Clarke E., Polguj M., Wysiadecki G.: Anatomical normality and variability: Historical perspective and methodological consideration. Translational Research in Anatomy. 2021 Jun; 23: 100105. https://doi.org/10.1016/j.tria.2020.100105
6. Tubbs R.S., Parmar A., Noordeh N., Rogers C., Rogers N., Loukas M., Shoja M.M., Cohen Gadol A.A.: Surgical anatomy of the radial nerve and profunda brachii artery within the triangular interval. Ital J Anat Embryol. 2008 Jul–Sep; 113 (3): 129–134. PMID: 19205584.
7. Menck J., Döbler A., Döhler J.R.: Vascularization of the humerus. Langenbecks Arch Chir. 1997; 382 (3): 123–127. PMID: 9324609.
8. Casoli V., Kostopoulos E., Pélissier P., Caix P., Martin D., Baudet J.: The middle collateral artery: anatomic basis for the “extreme” lateral arm flap. Surg Radiol Anat. 2004 Jun; 26 (3): 172–177. https://doi.org/10.1007/s00276-003-0206-y. Epub 2004 Jan 17. PMID: 14730394.
9. Katsaros J., Schusterman M., Beppu M., Banis J.C. Jr, Acland R.D.: The lateral upper arm flap: anatomy and clinical applications. Ann Plast Surg. 1984 Jun; 12 (6): 489–500. https://doi.org/10.1097/00000637-198406000-00001. PMID: 6465806.
10. Hammer H., Bugyi I.: Free transfer of a lateral upper arm flap. Handchir Mikrochir Plast Chir. 1988 Jan; 20 (1): 20–26. PMID: 2895050.
11. Wenig B.L.: The lateral arm free flap for head and neck reconstruction. Otolaryngol Head Neck Surg. 1993 Jul; 109 (1): 116–119. https://doi.org/10.1177/019459989310900121. PMID: 8336957.
12. Lim A.Y., Pereira B.P., Kumar V.P.: The long head of the triceps brachii as a free functioning muscle transfer. Plast Reconstr Surg. 2001 Jun; 107 (7): 1746–1752. https://doi.org/10.1097/00006534-200106000-00016. PMID: 11391194.
13. Piquilloud G., Villani F., Casoli V.: The medial head of the triceps brachii. Anatomy and blood supply of a new muscular free flap: the medial triceps free flap. Surg Radiol Anat. 2011 Jul; 33 (5): 415–420. https://doi.org/10.1007/s00276-010-0739-9. Epub 2010 Oct 26. PMID: 20976453.
14. Naveen K., Jyothsna P., Nayak S.B., Mohandas R.K., Swamy R.S., Deepthinath R., Shetty S.D.: Variant origin of an arterial trunk from axillary artery continuing as profunda brachii artery—a unique arterial variation in the axilla and its clinical implications. Ethiop J Health Sci. 2014 Jan; 24 (1): 93–96. https://doi.org/10.4314/ejhs.v24i1.13. PMID: 24591805.
15. Aastha, Jain A., Kumar M.S.: An unusual variation of axillary artery: a case report. J Clin Diagn Res. 2015 Jan; 9 (1): AD05–7. https://doi.org/10.7860/JCDR/2015/11680.5477. Epub 2015 Jan 1. PMID: 25737968.
16. Celik H.H., Aldur M.M., Tunali S., Ozdemir M.B., Aktekin M.: Multiple variations of the deep artery of arm: double deep artery of arm and deep artery of arm with the superior ulnar collateral artery. A case report. Morphologie. 2004 Dec; 88 (283): 188–190. https://doi.org/10.1016/s1286-0115(04)98147-7. PMID: 15693422.
17. Vitale N., Lucarelli K., Di Bari N., Milano A.D.: Anomalous origin of a grafted left internal mammary artery from the deep brachial artery. Eur Heart J. 2021 Mar 21; 42 (12): 1182. https://doi.org/10.1093/eurheartj/ehab015
18. Iwanaga J., Singh V., Ohtsuka A., et al.: Acknowledging the use of human cadaveric tissues in research papers: Recommendations from anatomical journal editors. Clinical Anat. 2021; 2–4. https://doi.org/10.1002/ca.23671
19. Walocha J.A., Szczepański W., Miodoński A.J., Gorczyca J., Skrzat J., Bereza T., Ceranowicz P., Lorkowski J., Stachura J.: Application of acrylic emulsion Liquitex R (Binney and Smith) for the preparation of injection specimens and immunohistochemical studies — an observation. Folia Morphol. 2003; 62 (2): 157–161.
20. Crocco J.A.: The Classic Collector’s Edition Gray’s Anatomy. Bounty Books, New York 1977. ISBN 0-517-223651.
21. Panagouli E., Tsaraklis A., Gazouli I., Anagnostopoulou S., Venieratos D.: A rare variation of the axillary artery combined contralaterally with an unusual high origin of a superficial ulnar artery: description, review of the literature and embryological analysis. Ital J Anat Embryol. 2009 Oct–Dec; 114 (4): 145–156. PMID: 20578671.
22. Clarke E., Mazurek A., Radek M., Żytkowski A., Twardokęs W., Polguj M., Wysiadecki G.: Superficial brachial artery — A case report with commentaries on the classification. Trans Res in Anat. 2021; 23: 100112. https://doi.org/10.1016/j.tria.2021.100112
23. Yücel A.H.: Unilateral variation of the arterial pattern of the human upper extremity with a muscle variation of the hand. Acta Med Okayama. 1999 Apr; 53 (2): 61–65. https://doi.org/10.18926/AMO/31629. PMID: 10358720
24. Cavdar S., Zeybek A., Bayramiçli M.: Rare variation of the axillary artery. Clin Anat 2000; 13 (1): 66–68. https://doi.org/10.1002/(SICI)1098-2353(2000)13:166::AID-CA8>3.0.CO;2-M.
25. Dalin L., Jingqiang Y., Kun Z., Yunhui C.: Surgical treatment of deep brachial artery aneurysm. Ann Vasc Surg. 2011 Oct; 25 (7): 983.e13–6. https://doi.org/10.1016/j.avsg.2011.05.006.
26. Griffin L., Garland S.J., Ivanova T., Hughson R.L.: Blood flow in the triceps brachii muscle in humans during sustained submaximal isometric contractions. Eur J Appl Physiol. 2001 May; 84 (5): 432–437. https://doi.org/10.1007/s004210100397. PMID: 11417431
27. de Paula R.C., Erthal R., Fernandes R.M.P., Babinski M.A., Silva J.G., Chagas C.A.A.: Alomalous origin of the deep brachial artery (profunda brachii) observed in bilateral arms: case report. J Vasc Bras. 2013; 12 (1): 53–56.
28. Osiak K., Elnazir P., Mazurek A., Pasternak A.: Prevalence of the persistent median artery in patients undergoing surgical open carpal tunnel release: A case series. Trans Res in Anat; 2021; 23: 100113. https://doi.org/10.1016/j.tria.2021.100113
29. Rodriguez-Niedenführ M., Burton G.J., Deu J., Sañudo J.R.: Development of the arterial pattern in the upper limb of staged human embryos: normal development and anatomic variations. J Anat 2001; 199 (4): 407–417. PMID: 11693301.
30. Dubreuil-Chambardel L.: Variations des Arteres du Membre Superieur. Paris: Masson et Cie, 1926.
Go to article

Authors and Affiliations

Wojciech Przybycień
1
Michał Zarzecki
1
Agata Musiał
1
Paweł Depukat
1
Bartłomiej Kruszyna
1
Agata Mazurek
1
Julia Jaszczyńska
1
Kinga Glądys
1
Ewa Walocha
2
Ewa Mizia
1
Grzegorz Wysiadecki
3
Jerzy Walocha
1

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Clinical Nursing, Institute of Nursing and Obstetrics, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Łódź, Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the research was to define the frequency prevalence of the incorporation of sphenoid sinuses’ septum / septa in the carotid canal of the adult population.
M a t e r i a l s and M e t h o d s: 296 computed tomography (CT) scans of the patients (147 females, 149 males), who did not present any pathology in the sphenoid sinuses, were evaluated in this retrospective analysis. Spiral CT scanner — Siemens Somatom Sensation 16 — was used to glean the medical images. Standard procedure applied in the option Siemens CARE Dose 4D. No contrast medium was administered. Multiplans reconstruction (MPR) tool was used in order to obtain frontal and sagittal planes from the transverse planes previously received.
R e s u l t s: Bilateral incorporation of the main septum (MS) in the carotid canal was not present in any of the patients, whereas unilateral incorporation was noticed in 21.96% of the patients (17.68% females, 26.17% males). On the right side it occurred in 11.82% of cases (10.88% females, 12.75% males), and on the left side in 10.14% of cases (6.8% females, 13.42% males). Bilateral incorporation of the additional septum (AS) was found in 8.45% of the patients (4.08% females, 12.75% males), whereas unilateral incorporation was noted in 28.37% of the patients. It was seen on the right side in 11.82% of cases (12.93% females, 10.74% males), and on the left side in 16.55% cases (15.65% females, 17.45% males). The most common variant was the incorporation of only one of the septa (either the MS or the AS) in the wall of the carotid canal unilaterally. Such situation took place in 30.07% of the patients (29.25% females, 30.87% males).
Incorporation of two septa on the same side was noticed in 4.39% of cases (4.08% females, 4.7% males), and incorporation of three septa in 0.34% of cases (0.7% males).
C o n c l u s i o n s: The anatomy of the paranasal sinuses is varied to a great extent, hence performing a CT scan is crucial before the scheduled surgery, as it may lessen the unforeseeable surgical complications, that may result from the high prevalence of variants in the sinuses.


Go to article

Bibliography

1. Jaworek-Troć J., Zarzecki M., Bonczar A., Kaythampillai L.N., Rutowicz B., Mazur M., Urbaniak J., Przybycień W., Piątek-Koziej K., Kuniewicz M., Lipski M., Kowalski W., Skrzat J., Loukas M., Walocha J.: Sphenoid bone and its sinus — anatomo-clinical review of the literature including application to FESS. Folia Med Crac. 2019; 59 (2): 45–59. doi: 10.24425/fmc.2019.128453.
2. Jaworek-Troć J., Zarzecki M., Mróz I., Troć P., Chrzan R., Zawiliński J., Walocha J., Urbanik A.: The total number of septa and antra in the sphenoid sinuses — evaluation before the FESS. Folia Med Crac. 2018; 58 (3): 67–81. doi: 10.24425/fmc.2018.125073.
3. Jaworek-Troć J., Iwanaga J., Chrzan R., Zarzecki J.J., Żmuda P., Pękala A., Tomaszewska I.M., Tubbs R.S., Zarzecki M.P.: Anatomical variations of the main septum of the sphenoidal sinus and its importance during transsphenoidal approaches to the sella turcica. Translational Research in Anatomy. 2020 Nov; 21: 100079, https://doi.org/10.1016/j.tria.2020.100079.
4. Abdullah B.J., Arasaratnam A., Kumar G., Gopala K.: The sphenoid sinuses: computed tomographic assessment of septation, relationship to the internal carotid arteries and sidewall thickness in the Malaysian population. J HK Coll Radiol. 2001; 4: 185–188.
5. Eryilmaz A., Ozeri C., Bayiz U., Samim E., Gocmen H., Akmansu H., Safak M.A., Dursun E.: Functional endoscopic sinus surgery (FESS). Turk J Med Res. 1993; 11 (5): 221–223.
6. Haetinger R.G., Navarro J.A.C., Liberti E.A.: Basilar expansion of the human sphenoidal sinu: an integrated anatomical and computerized tomography study. Eur Radiol. 2006; 16: 2092–2099.
7. Kantarci M., Karasen R.M., Alper F., Onbas O., Okur A., Karaman A.: Remarkable anatomic variantions in paranasal sinus region and their clinical importance. European Journal of Radiology. 2004; 50: 296–302.
8. Kazkayasi M., Karadeniz Y., Arikan O.K.: Anatomic variations of the sphenoid sinus on computed tomography. Rhinology. 2005; 43: 109–114.
9. Keast A., Yelavich S., Dawes P., Lyons B.: Anatomical variations of the paranasal sinuses in Polynesian and New Zealand European computerized tomography scans. Otolaryngology-Head and Neck Surgery. 2008; 139: 216–221.
10. Mafee M.F., Chow J.M., Meyers R.: Functional endoscopic sinus surgery: anatomy, CT screening, indications and complications. AJR. 1993; 160: 735–744.
11. Mutlu C., Unlu H.H., Goktan C., Tarhan S., Egrilmez M.: Radiologic anatomy of the sphenoid sinus for intranasal surgery. Rhinology. 2001; 39: 128–132.
12. Perez-Pinas I., Sabate J., Carmona A., Catalina-Herrera C.J., Jimenez-Castellanos J.: Anatomical variations in the human paranasal sinus region studied by CT. J Anat. 2000; 197: 221–227.
13. Sareen D., Agarwail A.K., Kaul J.M., Sethi A.: Study of sphenoid sinus anatomy in relation to endoscopic surgery. Int. J Morphol. 2005; 23 (3): 261–266.
14. Terra E.R., Guedes F.R., Manzi F.R., Boscolo F.N.: Pneumatization of the sphenoid sinus. Dentomaxillofacial Radiology. 2006; 35: 47–49.
15. Becker D.G.: The minimally invasive, endoscopic approach to sinus surgery. Journal of Long-Term Effects of Medical Implants. 2003; 13 (3): 207–221.
16. Bogusławska R.: Badanie zatok przynosowych metoda tomografii komputerowej dla celów chirurgii endoskopowej. Warszawa 1995.
17. Krzeski A., Osuch-Wójcikiewicz E., Szwedowicz P., Tuszyńska A.: Chirurgia endoskopowa w leczeniu guzów jam nosa i zatok przynosowych. Mag ORL. 2004; 3 (3): 79–84.
18. Kapur E., Kapidzic A., Kulenovic A., Sarajlic L., Sahinovic A., Sahinovic M.: Septation oft he sphenoid sinus and ist clinical significance. International Journal of Collaborative Research on Internal Medicine & Public Health. 2012; 4 (10): 1793–1802.
19. Fernandez-Miranda J.C., Prevedello D.M., Madhok R., Morera V., Barges-Coll J., Reineman K., Snyderman C.H., Gardner P., Carrau R., Kassam A.B.: Sphenoid septations and their relationship with internal carotid arteries: anatomical and radiological study. Laryngoscope. 2009; 119: 1893–1896.
20. Sethi D.S., Stanley R.E., Pillay P.K.: Endoscopic anatomy of the sphenoid sinus and sella turcica. The Journal of Laryngology and Otology. 1995; 109: 951–955.
21. Lupascu M., Comsa Gh.I., Zainea V.: Anatomical variations of the sphenoid sinus — a study of 200 cases. ARS Medica Tomitana. 2014; 2 (77): 57–62.
22. Bademci G., Unal B.: Surgical importance of neurovascular relationships of paranasal sinus region. Turkish Neurosurgery. 2005; 15 (2): 93–96.
23. Elwany S., Elsaeid I., Thabet H.: Endoscopic anatomy of the sphenoid sinus. The Journal of Laryngology and Otology. 1999; 113: 122–126.
24. Anusha B., Baharudin A., Philip R., Harvinder S., Mohd Shaffie B., Ramiza R.R.: Anatomical variants of surgically important landmarks in the sphenoid sinus: a radiologic study in Southeast Asian patients. Surg Radiol Anat. 2015; 37: 1182–1190.
25. Hamid O., El Fiky L., Hassan O., Kotb A., El Fiky S.: Anatomic variations of the sphenoid sinus and their impact on trans-sphenoid pituitary surgery. Skull Base. 2008; 18 (1): 9–15.
26. Stokovic N., Trkulja V., Dumic-Cule I., Cukovic-Bagic I., Lauc T., Vukicevic S., Grgurevic L.: Sphenoid sinus types, dimensions and relationship with surrounding structures. Ann Anat. 2016; 203: 69–76.
27. Tan H.M., Chong V.F.H.: CT of the paranasal sinuses: normal anatomy, variations and pathology. CME Radiology. 2001; 2 (3): 120–125.
28. Jaworek-Troć J., Walocha J.A., Chrzan R., Żmuda P., Zarzecki J.J., Pękala A., Depukat P., Kucharska E., Lipski M., Curlej-Wądrzyk A., Zarzecki M.P.: Protrusion of the carotid canal into the sphenoid sinuses: evaluation before endonasal endoscopic sinus surgery. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0086.
29. Jaworek-Troć J., Walocha J.A., Loukas M., Tubbs R.S., Iwanaga J., Zawiliński J., Brzegowy K., Zarzecki J.J., Curlej-Wądrzyk A., Kucharska E., Burdan F., Janda P., Zarzecki M.P.: Extensive pneumatisation of the sphenoid bone — anatomical investigation of the recesses of the sphenoid sinuses and their clinical importance. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0120.
Go to article

Authors and Affiliations

Joanna Jaworek-Troć
1 2
Michał Zarzecki
1
Dariusz Lusina
1
Tomasz Gładysz
3
Paweł Depukat
1
Agata Mazurek
1
Wojciech Twardokęs
4
Anna Curlej- Wądrzyk
5
Joe Iwanaga
6
Ewa Walocha
7
Robert Chrzan
2
Andrzej Urbanik
2

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Dental Surgery, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  4. Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland
  5. Department of Integrated Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  6. Department of Neurosurgery, Tulane University, New Orleans, USA
  7. Department of Clinical Nursing, Institute of Nursing and Obstetrics, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Introduction: The main goal of the present umbrella review was to provide the most up-to- date and evidence-based results regarding the various treatment options for tennis elbow (TE), which hopefully will significantly decrease the confusions existing in the literature. Furthermore, our study differs from past analytical studies because, as to the best of the authors’ knowledge, is the first to provide independent (not in comparison to other treatment) statistical results regarding the effectiveness of each TE treatment.
Materials and Methods: Major medical databases such as PubMed, Scopus, Embase, Web of Science, Google Scholar, Cochrane Library, BIOSIS, and EBSCO were searched. The overall search process was conducted in 3 stages.
Results: A total of 40 studies met the inclusion criteria and were included in this study. Out of those 40 meta-analyses, a total of 160 primary studies were screened in order to extract the data and perform a statistical analysis.
Conclusion: The present umbrella review underlines the efficiency of injection therapies, especially autologous blood, and platelet-rich plasma, while simultaneously proving the ineffectiveness of acupunc-ture and shock wave therapy as treatments for TE. Furthermore, the value of other known conservative treatment modalities, such as physical therapy, has been demonstrated.
Go to article

Authors and Affiliations

Michał Bonczar
1 2
Patryk Ostrowski
1 2
Dawid Plutecki
2 3
Martyna Dziedzic
1 2
Jakub Florek
4
Weronika Michalik
1
Wojciech Przybycień
1
Paweł Depukat
1
Bartosz Rutowicz
1
Ewa Walocha
1 2
Mateusz Koziej
1 2

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Youthoria. Youth Research Organization, Kraków, Poland
  3. Collegium Medicum, Jan Kochanowski University, Kielce, Poland
  4. Department of Orthopaedics and Traumatology, Rydygier Hospital, Brzesko, Poland
Download PDF Download RIS Download Bibtex

Abstract

Th e forearm is a body region of numerous anatomical variations. Due to its favorable anatomy fl exor digitorum superfi cialis muscle (FDS) is commonly used in tendon transfer surgeries. In this study a unique combination of abnormalities was found in a single forearm: the fl exor digitorum superfi cialis muscle penetrated by the median nerve, one of the fl exor digitorum superfi cialis tendons early division and absence of the palmaris longus muscle. Described variation potentially may lead to the clinical manifestation of the median nerve compression and should be also considered during FDS surgery.
Go to article

Authors and Affiliations

Maciej Lis
Bernard Solewski
Mateusz Koziej
Ewa Walocha
Jerzy A. Walocha
Wiesława Klimek-Piotrowska
Download PDF Download RIS Download Bibtex

Abstract

Increasing numbers of implanted cardiovascular electronic devices, results in a need for lead extractions, which has increased to an annual volume of over 10,000 worldwide. We present a cadaveric dissection body with a single chamber pacemaker implanted 5y before death.

Go to article

Authors and Affiliations

Marcin Kuniewicz
Jerzy Andrzej Walocha
Kinga Budnicka
Małgorzata Mazur
Ewa Walocha
Michał Jurczyk
Download PDF Download RIS Download Bibtex

Abstract

Anatomy of the vascular system of the leg was studied using classical anatomical dissection methods. Based also on literature we have reviewed the current knowledge on the vascularization of the lower leg and its embryological background with special respect toward the posterior tibial artery and its branches.

Go to article

Authors and Affiliations

Przemysław Chmielewski
Łukasz Warchoł
Izabela Mróz
Michał Malczak
Joanna Jaworek
Ewa Mizia
Ewa Walocha
Paweł Depukat
Piotr Bachul
Tomasz Bereza
Wojciech Kurzydło
Barbara Gach-Kuniewicz
Małgorzata Mazur
Krzysztof Tomaszewski

This page uses 'cookies'. Learn more