Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Ultrasonic disintegration, as a method of sludge pre-treatment (before the stabilization process), causes changes in their physicochemical characteristics. The aim of this study was to determine the influence of ultrasonic disintegration conditions (sonication) on the changes in the physicochemical characteristics of sonicated sludge, i.e. an increase in the content of organic substances in the supernatant, sludge dewaterability and flocs structure. Thickened and non-thickened excess sludge from the municipal wastewater treatment plant in Gliwice was disintegrated. The process was conducted, using a high-power disintegrator equipped with a lenticular horn. In order to determine the most favorable conditions, the sewage sludge was sonicated at a wave frequency of f=25 kHz (as a function of time), with a different samples volume (V1=0.5 and V2=1 L) and emitter position of 1 and the 2.5 cm from the bottom of the chamber in which the process was conducted. The disintegration of sewage sludge was carried out with a specific energy density (EV) in the range from 10 to 30 kWh/m3. The evaluation of the disintegration effects was based on changes in the physicochemical characteristics of the sludge and/or supernatant at the end of the process, expressed by commonly used and author’s disintegration indicators. The best results were obtained for the sludge disintegrated with a volume of V2=1 L and the emitter position of 2.5 cm from the bottom of the chamber. The study confirms that in various operating conditions of ultrasonic disintegration, there is a possibility for obtaining different effects which may influence the course of anaerobic stabilization and quality of the final products of the process.

Go to article

Authors and Affiliations

Malwina Tytła
Ewa Zielewicz
Download PDF Download RIS Download Bibtex

Abstract

The research objective was to study temporal and spatial relations between specific phosphorus species as well as to examine total phosphorus content in the bottom sediments of an anthropogenic, hypertrophic limnic ecosystem Rybnik Reservoir, functioning under thermal pollution conditions. The chemical extraction procedure for the speciation of bioavailable phosphorus forms was used. It was found that available algae phosphorus was the most dominant phosphorus species in both sediment layers (83%), while the lower share was readily desorbed phosphorus form (0.1%). The phosphorus species concentrations depended on the organic matter concentration. The differences between phosphorus species contents in the upper (5 cm) and lower (15–20 cm) sediment core layers were low. The biologically active sediment layer extended from the sediment surface to at least 20 cm depth of the sediment core. Distributions of the concentrations within the year and at specific sampling points resulted from the variability observed for particular points and transformation intensity. Furthermore in the following study, the reaction rate constant for the increase and decrease in the concentrations of the phosphorus species in sediments was given. It was indicated that the speed of the phosphorus species transformations was affected by the environment temperature. In the heated water discharge zone (water temp. 17–35°C) the concentrations of selected speciation phosphorus forms increased more than in the dam zone (5–25°C). It was also found that the abundance of the bottom sediments with phosphorus species was related to the oblong and transverse asymmetry of reservoir depth.

Go to article

Authors and Affiliations

Maciej Kostecki
Malwina Tytła
Joanna Kernert
Katarzyna Stahl

This page uses 'cookies'. Learn more