Search results

Filters

  • Journals

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Lean mixture burning leads to a decrease in the temperature of the combustion process and it is one of the methods of limiting nitric oxide emissions. It also increases engine efficiency. An effective method to correct lean mixture combustion can be a two-stage system of stratified mixture combustion in an engine with a prechamber. This article presents the results of laboratory research on an SI engine (spark ignition) with a two-stage combustion system with a cylinder powered by gasoline and a prechamber powered by propane-butane gas LPG (liquefied petroleum gas). The results were compared to the results of research on a conventional engine with a one-stage combustion process. The test engine fuel mixture stratification method, with a two-stage combustion system in the engine with a prechamber, allowed to burn a lean mixture with an average excess air factor equal to 2.0 and thus led to lower emissions of nitrogen oxides in the exhaust of the engine. The test engine with a conventional, single-stage combustion process allowed to properly burn air-fuel mixtures of excess air factors λ not exceeding 1.5. If the value λ > 1.5, the non-repeatability factor COVLi increases, and the engine efficiency decreases, which makes it virtually impossible for the engine to operate. The engine with a two-stage combustion process, working with λ = 2.0, the Qin/Qtot = 2.5%, reduced the NOx content in the exhaust gases to a level of about 1.14 g/kWh. This value is significantly lower than the value obtained in a conventional engine, which worked at λ = 1.3 with comparable non-repeatability of successive cycles (about 3%) and a similar indicated efficiency (about 34%), was characterised by the emissions of NOx in the exhaust equal to 26.26 g/kWh.

Go to article

Authors and Affiliations

Arkadiusz Jamrozik
Wojciech Tutak
Download PDF Download RIS Download Bibtex

Abstract

Results of a research study into the velocity field in combustion chamber of internal combustion engine are presented in the paper. Measurements of fresh charge flow velocity in the cylinder axis and near the cylinder squeezing surface were performed. The hot-wire anemometer was used. The measurement results were used for analysis of turbulence field in the examined combustion chamber. It turned out that in the axis of cylinder the maximum of velocity occurs 30 deg before TDC and achieves 6 m/s. In the studied combustion chamber, the maximum value of turbulence intensity was close to 0.2 and it was achieved 35 deg BTDC. Additionally, the maximal velocity dispersion in the following cycles of the researched engine was at the level of 2 m/s, which is 35% of the maximum value of flow velocity. At a point located near the squeezing surface of the piston, a similar level of turbulence, but a the smaller value of the average velocity was achieved. The turbulence field turned out to be inhomogeneous in the combustion chamber.

Go to article

Authors and Affiliations

Wojciech Tutak
Arkadiusz Jamrozik
Download PDF Download RIS Download Bibtex

Abstract

Abstract Underground extraction of coal is characterized by high variability of mining and geological conditions in which it is conducted. Despite ever more effective methods and tools, used to identify the factors influencing this process, mining machinery, used in mining underground, work in difficult and not always foreseeable conditions, which means that these machines should be very universal and reliable. Additionally, a big competition, occurring on the coal market, causes that it is necessary to take action in order to reduce the cost of its production, e.g. by increasing the efficiency of utilization machines. To meet this objective it should be pro-ceed with analysis presented in this paper. The analysis concerns to availability of utilization selected mining machinery, conducted using the model of OEE, which is a tool for quantitative estimate strategy TPM. In this article we considered the machines being part of the mechanized longwall complex and the basis of analysis was the data recording by the industrial automation system. Using this data set we evaluated the availability of studied machines and the structure of registered breaks in their work. The results should be an important source of information for maintenance staff and management of mining plants, needed to improve the economic efficiency of underground mining.
Go to article

Authors and Affiliations

Jarosław Brodny
Sara Alszer
Jolanta Krystek
Magdalena Tutak

This page uses 'cookies'. Learn more