Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the actual scientific and practical problem of improving methodological and methodical ap-proaches to the evaluation of design solutions in the water management and land reclamation industry based on the ecolog-ical and economic principles in conditions of uncertainty. The current stage of the development of the water management sector in Ukraine is characterized by a combination of past negligence and the present energy, food and water crises, as well as global climate change. To solve these problems, it is necessary to reform organizational-economic relations in the industry, including new sources and forms of financing for water management and land reclamation projects, introduction of new environmentally advanced technologies, and the im-provement of the existing ecological and economic evaluation of investments. Based on scientific and methodological recommendations used for evaluating the effectiveness of investment in vari-ous spheres of economic activity, the authors developed and implemented an improved methodology for the evaluation of water management and land reclamation projects. It is based on methodological approaches that cover such elements as the variety of options, changes in the value of money over time, specific project implementation environment, including the impact of weather, climate and environmental factors on project performance, multilevel and gradual evaluation of a pro-ject against specific criteria and according to stages of the project cycle. The method was tested during the reconstruction of a rice irrigation system in the steppe zone of about 3000 ha in Ukraine. Economic results, namely the deterministic payback period and investment return index confirm that the proposed mechanism, unlike the traditional one, increases the economic and environmental feasibility of water management and land reclamation projects. Therefore, it stimulates investment in the land reclamation sector.
Go to article

Bibliography

ARMEANU D., LACHE L. 2009. The NPV criterion for valuing investments under uncertainty. economic computation and economic cybernetics studies and research. Academy of Economic Studies. No. 4. Iss. 4 p. 133–143.
BIERMAN H. Jr., SMIDT S. 2006. The capital budgeting decision, ninth edition: economic analysis of investment projects. 9th ed. New York. Routledge. ISBN 9780415400046 pp. 424.
CHEN J. 2006. An analytical theory of project investment: A comparison with real option theory. International Journal of Managerial Finance. Vol. 2. No. 4 p. 354–363. DOI 10.1108/17439130610705535.
FROLENKOVA N., KOZHUSHKO L., ROKOCHINSKIY A. 2007. Ekoloho-ekonomichne otsinyuvannya v upravlinni melioratyvnymy proektamy: Monografіya [Ecological and economic assessment in the management of reclamation projects: Monograph]. Rivne. NUVGP. ISBN 966-327-049-7 pp. 258.
FROLENKOVA N., ROKOCHINSKIY F. 2015. The evaluation of environmental risks in the sphere of water and land reclamation [online]. Oxford Journal of Scientific Research. No. 1(9). Vol. III p. 155–160. [Access 15.06.2019]. Available at: https://core.ac.uk/download/pdf/33693269.pdf#page=155
FROLENKOVA N., ROKOCHINSKIY A., VOLK P., SHATKOVSKYІ A., PRYKHODKO N., TYKHENKO R., OPENKO I. 2020. Cost-effectiveness of investments in drip irrigation projects in Ukraine. International Journal of Green Economics (IJGE). Vol. 14. No. 4 p. 315–326. DOI 10.1504/IJGE.2020.112570.
HAKA S.F. 2006. A review of the literature on capital budgeting and investment appraisal: past, present, and future musings. Handbooks of Management Accounting Research. Vol. 2 p. 697–728. DOI 10.1016/S1751-3243(06)02010-4.
KOVALENKO P., ROKOCHINSKIY A., JEZNACH J., KOPTYUK R., VOLK P., PRYKHODKO N., TYKHENKO R. 2019. Evaluation of climate change in Ukrainian part of Polissia region and ways of adaptation to it. Journal of Water and Land Development. No. 41 (IV–VI) p. 77–82. DOI 10.2478/jwld-2019-0030.
KWAK Y.H., WILLIAM I.C. 2000. Calculating project management's return on investment. Project Management Journal. Vol. 31. Iss. 2 p. 38–47. DOI 10.1177/87569728000 3100205.
MARTYN A., OPENKO I., IEVSIUKOV T., SHEVCHENKO O., RIPENKO A. 2019. Accuracy of geodetic surveys in cadastral registration of real estate: value of land as determining factor. Proceedings of the 18th International Scientific Conference on Engineering for Rural Development. 22–24.05.2019 Jelgava, Latvia p. 1818–1825. DOI 10.22616/ERDev2019.18.N236.
MARTYN A., SHEVCHENKO O., TYKHENKO R., OPENKO I., ZHUK O., KRASNOLUTSKY О. 2020. Indirect corporate agricultural land use in Ukraine: distribution, causes, consequences. International Journal of Business and Globalisation. Vol. 25. No. 3 p. 378–395. DOI 10.1504/IJBG.2020.109029.
MAZHAYSKIY Y., ROKOCHINSKIY A., VOLCHEK A., MESHYK O., JEZNACH J. (ed.) 2017. Pryrodoobustroistvo Polesia [Environmental management of Polissya]. Kn. 2. Vyp. 1. Ryazan. VNIIGiM of A. Kostiakov. ISBN 978-5-00077654-4 pp. 902.
MOHAMED S., MCCOWAN A.K. 2001. Modelling project investment decisions under uncertainty using possibility theory. International Journal of Project Management. Vol. 19. Iss. 4 p. 231–241. DOI 10.1016/S0263-7863(99)00077-0.
NOWAK M. 2005. Investment projects evaluation by simulation and multiple criteria decision aiding procedure. Journal of Civil Engineering and Management. Vol. 11. Iss. 3 p. 193–202. DOI 10.1080/13923730.2005.9636350.
OPENKO I., SHEVCHENKO O., ZHUK О., KRYVOVIAZ Y., TYKHENKO R. 2017. Geoinformation modelling of forest shelterbelts effect on pecuniary valuation of adjacent farmlands. International Journal of Green Economics (IJGE). Vol. 11. No. 2 p. 139–153. DOI 10.1504/IJGE.2017.089015.
OPENKO I., KOSTYUCHENKO Y., TYKHENKO R., SHEVCHENKO O., TSVYAKH O., IEVSIUKOV T., DEINEHA M. 2020. Mathematical modelling of postindustrial land use value in the big cities in Ukraine. International Journal of Mathematical, Engineering and Management Sciences. Vol. 5. No. 2 p. 260–271. DOI 10.33889/IJMEMS.2020.5.2.021.
ROKOCHINSKIY A. 2010. Naukovі ta praktichnі aspekti optimіzacії vodoregulyuvannya osushuvanikh zemel' na ekologoekonomіchnikh zasadakh: Monografіya [The scientific and practical aspects optimization of water regulation drained lands on environmental and economic grounds. Monograph]. Rivne. NUVGP. ISBN 978-966327-141-5 pp. 352.
ROKOCHINSKIY A., BILOKON W., FROLENKOVA N., PRYKHODKO N., VOLK P., TYKHENKO R., OPENKO I. 2020. Implementation of modern approaches to evaluating the effectiveness of innovation for water treatment in irrigation. Journal of Water and Land Development. No. 45 (IV–VI) p. 119–125. DOI 10.24425/jwld.2020.133053.
ROKOCHINSKIY A., JEZNACH J., VOLK P., TURCHENIUK V., FROLENKOVA N., KOPTIUK R. 2018. Reclamation projects development improvement technology considering optimization of drained lands water regulation based on BIM. Scientific Review – Engineering and Environmental Sciences. Vol. 28. Iss. 3 p. 432–443. DOI 10.22630/PNIKS.2019.28.3.40.
ROKOCHINSKIY A., VOLK P., PINCHUK O., MENDUS S., KOPTYUK R. 2017. Comparative evaluation of various approaches to the foundation of parameters of agricultural drainage. Journal of Water and Land Development. No. 34 p. 215–220. DOI 10.1515/jwld-2017-0056.
ROKOCHINSKIY A., VOLK P., PINCHUK O., TURCHENIUK V., FROLENKOVA N., GERASIMOV IE. 2019. Forecasted estimation of the efficiency of agricultural drainage on drained lands. Journal of Water and Land Development. No. 40 (I–III) p. 149–153. DOI 10.2478/jwld-2019-0016.
TEICHROEW D., ROBICHEK A., MONTALBANO M. 1965. An analysis of criteria for investment and financing decisions under certaint. Management Science. Vol. 12. Iss. 3. DOI 10.1287/ mnsc.12.3.151. SHEVCHENKO О., OPENKO I., ZHUK О., KRYVOVIAZ Y., TYKHENKO R. 2017. Economic assessment of land degradation and its impact on the value of land resources in Ukraine [online]. International Journal of Economic Research (IJER). Vol. 14. No. 15. P. 4 p. 93–100. [Access 15.06.2019]. Available at: https://serialsjournals.com/abstract/34405_ch_11_f_-_ivan_openko.pdf
SUDONG YE., TIONG R.L.K. 2000. NPV-at-Risk method in infrastructure project investment evaluation. Journal of Construction Engineering and Management. Vol. 126. Iss. 3. DOI 10.1061/(ASCE)0733-9364(2000)126:3(227).
WANG L., XU N., XU N., SONG Y., WANG Y., SONG S. 2019. Research on investment decision of substation project based on life cycle cost. IOP Conference Series: Earth and Environmental Science. Vol. 242. Iss. 2. DOI 10.1088/1755-1315/ 242/2/022016.

Go to article

Authors and Affiliations

Pyotr Kovalenko
1
ORCID: ORCID
Anatoliy Rokochinskiy
2
ORCID: ORCID
Pavlo Volk
2
ORCID: ORCID
Vasyl Turcheniuk
2
ORCID: ORCID
Nadia Frolenkova
2
ORCID: ORCID
Ruslan Tykhenko
3
ORCID: ORCID

  1. Institute of Water Problems and Land Reclamation of NAAS of Ukraine, Chapaeva Str., 14, fl. 6, 01030, Kyiv, Ukraine
  2. National University of Water and Environmental Engineering, Rivne, Ukraine
  3. National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The article focuses on the actual scientific and practical problem of accounting for the influence of meteorological and climatic factors in the technical and economic calculations in the field of environmental management. It has been proven that the introduction of scientifically sound and effective methods of using meteorological and cli-matic information in economic calculations significantly reduces the loss caused by weather conditions and improves the implementation of an optimal strategy for agricultural production on reclaimed lands. Such calculations are based on economic and statistical modelling of different variants that accounting for standard hy-drometeorological information in the implementation of design, management and economic decisions. This increases the validity and reliability of calculations, as well as their compliance with the actual operating conditions of environmental and economic facilities. Consequently, this attracts increased interest of both public and private investors. Not only under such conditions is a sustainable development of environmental management sectors possible but also the adaptation to global climate change and additional benefits from the efficient economic activity in the new environmen-tal conditions.
Go to article

Bibliography

ARMEANU D., LACHE L. 2009. The NPV criterion for valuing investments under uncertainty. Economic computation and economic cybernetics studies and research. Academy of Economic Studies. No. 4 p. 133–143.
BIERMAN H. JR., SMIDT S. 2006. The capital budgeting decision: Economic analysis of investment projects. 9th ed. Abingdon-on-Thames. Routledge. ISBN 9780415400046 pp. 424.
BLANC E., SCHLENKER W. 2017. The use of panel models in assessments of climate impacts on agriculture. Review of Environmental Economics and Policy. Vol. 11. Iss. 2. Summer p. 258–279. DOI 10.1093/reep/rex016.
DONG Z., PAN Z., WANG S., AN P., ZHANG J., ZHANG J., PAN Y., HUANG L., ZHAO H., HAN G., WU D., WANG J., FAN D., GAO L., PAN X. 2016. Effective crop structure adjustment under climate change. Ecological Indicators. Vol. 69. October p. 571–577. DOI 10.1016/j.ecolind.2016.04.010.
FROLENKOVA N., KOZHUSHKO L., ROKOCHINSKIY A. 2007. Ekoloho-ekonomichne otsinyuvannya v upravlinni melioratyvnymy proektamy: Monografіya [Ecological and economic assessment in the management of reclamation projects: Monograph]. Rivne. NUVGP. ISBN 966-327-049-7 pp. 258.
FROLENKOVA N., ROKOCHINSKIY A., VOLK P., SHATKOVSKYІ A., PRYKHODKO N., TYKHENKO R., OPENKO I. 2020. Cost-effec-tiveness of investments in drip irrigation projects in Ukraine. International Journal of Green Economics (IJGE). Vol. 14. No. 4 p. 315–326. DOI 10.1504/IJGE.2020.112570.
GOHAR A., CASHMAN A. 2016. A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare. Agricultural Systems. Vol. 147. September p. 51–64. DOI 10.1016/j.agsy.2016.05.008.
HAKA S. F. 2006. A review of the literature on capital budgeting and investment appraisal: Past, present, and future musings. Handbooks of Management Accounting Research. Vol. 2 p. 697–728. DOI 10.1016/S1751-3243(06)02010-4.
KOVALENKO P., ROKOCHINSKIY A., JEZNACH J., KOPTYUK R., VOLK P., PRYKHODKO N., TYKHENKO R. 2019. Evaluation of climate change in Ukrainian part of Polissia region and ways of adaptation to it. Journal of Water and Land Development. No. 41 (IV–VI) p. 77–82. DOI 10.2478/jwld-2019-0030.
MARTYN A., OPENKO I., IEVSIUKOV T., SHEVCHENKO O., RIPENKO A. 2019. Accuracy of geodetic surveys in cadastral registration of real estate: Value of land as determining factor. 18th International Scientific Conference. Engineering for Rural Development. 22–24.05.2019 Jelgava, Latvia p. 1818–1825. DOI 10.22616/ERDev2019.18.N236.
MARTYN A., SHEVCHENKO O., TYKHENKO R., OPENKO I., ZHUK O., KRASNOLUTSKY O. 2020. Indirect corporate agricultural land use in Ukraine: Distribution, causes, consequences. International Journal of Business and Globalisation. Vol. 25. No. 3 p. 378–395. DOI 10.1504/IJBG.2020.109029.
MASSEY E.E. 2012. Experience of the European Union in adaptation to climate change and its application to Ukraine [online]. Office of the Co-ordinator of OSCE Economic and Environmental Activities pp. 36. [Access 20.03.2020]. Available at: https://www.osce.org/ukraine/104019?download=true
MOHAMED S., MCCOWAN A.K. 2001. Modelling project investment decisions under uncertainty using possibility theory. International Journal of Project Management. Vol. 19. Iss. 4 p. 231–241. DOI 10.1016/S0263-7863(99)00077-0.
NOWAK M. 2005. Investment projects evaluation by simulation and multiple criteria decision aiding procedure. Journal of Civil Engineering and Management. Vol. 11. Iss. 3 p. 193–202. DOI 10.1080/13923730.2005.9636350.
OPENKO I., KOSTYUCHENKO Y. V., TYKHENKO R., SHEVCHENKO O., TSVYAKH O., IEVSIUKOV T., DEINEHA M. 2020. Mathematical modelling of postindustrial land use value in the big cities in Ukraine. International Journal of Mathematical, Engineering and Management Sciences. Vol. 5. No. 2. p. 260–271. DOI 10.33889/IJMEMS.2020.5.2.021.
OPENKO I., SHEVCHENKO O., ZHUK О., KRYVOVIAZ Y., TY¬KHENKO R. 2017. Geoinformation modelling of forest shelterbelts effect on pecuniary valuation of adjacent farmlands. International Journal of Green Economics (IJGE). Vol. 11. No. 2 p. 139–153. DOI 10.1504/IJGE.2017.089015.
REZAEI ZAMAN M., MORID S., DELAVAR M. 2016. Evaluating climate adaptation strategies on agricultural production in the Siminehrud catchment and inflow into Lake Urmia, Iran using SWAT within an OECD framework. Agricultural Systems. Vol. 147. September p. 98–110. DOI 10.1016/j.agsy. 2016.06.001.
ROKOCHINSKIY A. 2010. Naukovі ta praktichnі aspekti optimіzacіi vodoregulyuvannya osushuvanikh zemel' na ekologoekonomіchnikh zasadakh: Monografіya [The scientific and practical aspects optimization of water regulation drained lands on environmental and economic grounds. Monograph]. Rivne. NUVGP. ISBN 978-966327-141-5 pp. 352.
ROKOCHINSKIY A. 2016. Systemna optymizatsiya vodorehulyuvannya yak neobkhidna umova stvorennya ta funktsionuvannya vodohospodarsʹko-melioratyvnykh obʺyektiv na ekoloho-ekonomichnykh zasadakh [System optimization of water regulation as a prerequisite for the creation and operation of water management and reclamation facilities on ecological and economic grounds]. Vodne hospodarstvo Ukrayiny. No 104 p. 67–71.
ROKOCHINSKIY A., BILOKON V., FROLENKOVA N., PRYKHODKO N., VOLK P., TYKHENKO R., OPENKO I. 2020. Implementation of modern approaches to evaluating the effectiveness of innovation for water treatment in irrigation. Journal of Water and Land Development. No. 45 (IV–VI) p. 119–125. DOI 10.24425/jwld.2020.133053.
ROKOCHINSKIY A., FROLENKOVA N., KOPTIUK R. 2012. Іnvestitsіyna otsіnka proektіv optimіzatsії vodoregulyuvannya osushuvanih land of urahuvannyam mainly chinnikіv vplivu [Investment assessment project for optimizing water management of drained lands from the main bureaucrats]. Tavriysʹkyy naukovyy visnyk. Vol. 83 p. 216–220.
ROKOCHINSKIY A., JEZNACH J., VOLK, P., TURCHENIUK V., FROLENKOVA N., KOPTIUK R. 2019. Reclamation projects development improvement technology considering optimization of drained lands water regulation based on BIM. Scientific Review Engineering and Environmental Sciences. Vol. 28. Iss. 3(85) p. 193–202. DOI 10.22630/PNIKS.2019.28.3.40.
ROKOCHINSKIY A., STACHUK V., FROLENKOVA N., SHALAY S., KOPTYUK R., VOLK P.. 2010. Tymchasovi rekomendatsiyi z optymizatsiyi vodorehulyuvannya osushuvanykh zemelʹ u proektakh budivnytstva y rekonstruktsiyi vodohospodarsʹko-melioratyvnykh obʺyektiv [Temporary recommendations for optimization of water management of drained lands in projects of construction and reconstruction of water management and reclamation facilities]. Rivne. NUVGP pp. 52.
ROKOCHYNSKIY A., TURCHENIUK V., PRYKHODKO N., VOLK P., GERASIMOV I., KOÇ C. 2020. Evaluation of climate change in the rice-growing zone of Ukraine and ways of adaptation to the predicted changes. Agricultural Research. DOI 10.1007/ s40003-020-00473-4.
ROKOCHINSKIY A., VOLK P., FROLENKOVA N., SHALAY S., KOPTYUK R., ZAYETS V. PRYKHODKO N. 2013. Naukovo-metodychni rekomendatsiyi do obgruntuvannya optymalʹnykh parametriv silʹsʹkohospodarsʹkoho drenazhu na osushuvanykh zemlyakh za ekonomichnymy ta ekolohichnymy vymohamy [Scientific and methodological recommendations for substantiation of optimal parameters of agricultural drainage on drained lands according to economic and environmental requirements]. Rivne. NUVGP pp. 34.
SHALAY S., ROKOCHINSKIY A., STASHUK V., BEZHUK V. 2004. Tymchasovi rekomendatsiyi z obhruntuvannya efektyvnoyi proektnoyi vrozhaynosti na osushuvanykh zemlyakh pry budivnytstvi y rekonstruktsiyi melioratyvnykh system [Temporary recommendations for substantiation of effective project yield on drained lands during construction and reconstruction of reclamation systems]. Rivne. NUVGP pp. 44.
SHEVCHENKO О., OPENKO I., ZHUK О., KRYVOVIAZ Y., TY¬KHENKO R. 2017. Economic assessment of land degradation and its impact on the value of land resources in Ukraine [online]. International Journal of Economic Research (IJER). Vol. 14. No. 15. P. 4. p. 93–100. [Access 18.06.2020] Available at: https://serialsjournals.com/abstract/34405_ch_11_f_-_ivan_openko.pdf
ZHUKOVSKY E. 1981. Meteorologicheskaya informatsiya i ekonomicheskiye resheniya [Meteorological information and economic decisions]. Leningrad. Gidrometeoizdat pp. 304.

Go to article

Authors and Affiliations

Anatoliy Rokochinskiy
1
ORCID: ORCID
Nadia Frolenkova
1
ORCID: ORCID
Vasyl Turcheniuk
1
ORCID: ORCID
Pavlo Volk
1
ORCID: ORCID
Nataliіa Prykhodko
1
ORCID: ORCID
Ruslan Tykhenko
2
ORCID: ORCID
Ivan Openko
2
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Str. Soborna, 11, 33000, Rivne, Ukraine
  2. National University of Life and Environmental Sciences of Ukraine, Str. Vasylkivska, 17, 03040, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the option for the application of the methodology for the solution of boundary value problems on the conformal mapping for the calculation of filtration process in the horizontal systematic drainage, provided that the drain is installed at a different depth. In particular, the case of methods combining fictitious areas and quasiconformal mappings for solving nonlinear boundary conditions problems for calculating filtration regimes in soils with free sections of boundaries (depression curves) and intervals of the “drainage” type. As an example, the authors designed a hydrodynamic flow grid, determined the values of the flows to the drain, established a section line and elicited other process characteristics. The algorithm for the numerical solution of model nonlinear boundary conditions problems of quasiconformal reflection in areas bounded by two equipotential lines and two flow lines, when for one of the sections, the boundary is an unknown (free) curve with fixed and free ends. The conducted numerical calculations prove that the problems and algorithms of their numerical solution, with a relatively small iterations number (k = 141) suggested in the paper, can be applied in the simulation of nonlinear filtration processes that arise in horizontal drainage systems. Total filtration flow obtained Q = 0.9 dm3·s–1; flow for drains Q1 = 0.55 dm3·s–1 and Q2 = 0.35 dm3·s–1 are quite consistent with practically determined values.
Go to article

Authors and Affiliations

Volodymyr Havryliuk
1
ORCID: ORCID
Andrii Bomba
2
ORCID: ORCID
Oleg Pinchuk
2
ORCID: ORCID
Ievgenii Gerasimov
2
ORCID: ORCID
Serhii Klimov
2
ORCID: ORCID
Mykola Tkachuk
2
ORCID: ORCID
Vasyl Turcheniuk
2
ORCID: ORCID

  1. Rivne State University of Humanities, Rivne, Ukraine
  2. National University of Water and Environmental Engineering, Rivne, 11 Soborna St., 33028, Ukraine

This page uses 'cookies'. Learn more