Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work, the effects of 75 mm thick cast iron, (casting mould YIV) composition (Cu) and heat treatment were investigated on the microstructure and mechanical properties (hardness, elongation, tensile strength, yield strength) of ductile iron castings. As a result of adding Cu, the amount of pearlite is at 80% reduces of amount of ferrite. Normalizing of non-alloy cast iron increases the amount of pearlite to 70%. It also, increases tensile strength (659 MPa) and hardness (248 HB). Studied metallographic crossections were made from the grip sections of the tensile specimens. The structure composition and the characteristics of graphite were determined by computer image analysis. Measurements of graphite of non-alloy cast iron after normalizing and in cooper cast iron indicate the approximate amount of precipitates of graphite and their approximate average diameters. The applied normalizing and the additive alloy (Cu) were established to give comparable mechanical properties and structure of matrix in thick-walled castings.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
Download PDF Download RIS Download Bibtex

Abstract

The paper presents adaptation problem of lamellar/rod growth of eutectic. The transformation of eutectic microstructure was investigated systematically. A interpretation of the eutectic growth with theory minimum entropy production was presented.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
Download PDF Download RIS Download Bibtex

Abstract

Directional solidification of ledeburite was realised out using a Bridgman’s device. The growth rate for movement sample v=83.3 μm/s

was used. In one sample the solidification front was freezing. The value of temperature gradient in liquid at the solidification front was

determined. Interfacial distance λ on the samples was measured with NIS-Elements application for image analysis.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
Download PDF Download RIS Download Bibtex

Abstract

Fe - 4,25% C alloy was directionally solidified with a constant temperature gradient of G = 33,5 K/mm and growth rate of v = 83,3 μm/s (300 mm/h) using a vacuum Bridgman-type crystal growing facility with liquid metal cooling technique. To reveal more detailed microstructure, the deep etching was made. This was obtained in the process of electrolytic dissolution. The microstructure of the sample was examined on the longitudinal and transverse sections using an Optical Microscope and Scanning Electron Microscope. Using the Electron Backscattered Diffraction technique, phase map and analysis of phase were made. In this paper the analysis of Fe-C alloy eutectic microstructure is presented. Regular eutectic structure was obtained. The fracture surfaces show lamellar structure. Microscopic observation after electrolytic extraction indicates that the grains of longitudinal shape of eutectic cementite have been obtained. These grains are characterized by layered construction with many rounded discontinuities.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
Download PDF Download RIS Download Bibtex

Abstract

In a vacuum Bridgman-type furnace, under an argon atmosphere, directionally solidified sample of Fe - C alloy was produced. The pulling

rate was v = 83 μm/s (300 mm/h) and constant temperature gradient G = 33,5 K/mm. The microstructure of the sample was examined on

the longitudinal section using an Optical Microscope and Scanning Electron Microscope. The X-ray diffraction and electron backscatter

diffraction technique (EBSD) have been used for the crystallographic analysis of carbide particles in carbide eutectic. The

X-ray diffraction was made parallel and perpendicular to the axis of the goniometer. The EBSD shows the existence of iron carbide Fe3C

with orthorhombic and hexagonal structure. Rapid solidification may cause a deformation of the lattice plane which is indicated by

different values of the lattice parameters. Such deformation could also be the result of directional solidification. Not all of the peaks in

X–ray diffractograms were identified. They may come from other iron carbides. These unrecognized peaks may also be a result of the

residual impurity of alloy.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
Download PDF Download RIS Download Bibtex

Abstract

Directionally solidified sample of Fe-Fe3C eutectic alloy were produced under an argon atmosphere in a vacuum Bridgman-type furnace to

study the eutectic growth with v = 167 μm/s pulling rate and constant temperature gradient G = 33.5 K/mm. Since how the growth texture

of eutectic cementite is related to its growth morphology remains unclear, the current study aims to examine this relationship. The technique

such as X-ray diffraction, have been used for the crystallographic analysis of carbide particles in white cast irons.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
T. Szykowny
Download PDF Download RIS Download Bibtex

Abstract

Directional solidification of the Fe - 4,3 wt % C alloy was performed with the pulling rate equal to v=83 μm/s. Sample was frozen during

solidification to reveal the shape of the solid/liquid interface. Structures eutectic pyramid and spherolitic eutectic were observed. The

solidification front of ledeburite eutectic was revealed. The leading phase was identified and defined.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
E. Olejnik
Download PDF Download RIS Download Bibtex

Abstract

In order to determine the leading phase of the Fe - 4.25% C eutectic alloy, the method of directional crystallization, which allows to study the character of the solid / liquid growth front, was used. Examined eutectic was directionally solidified with a constant temperature gradient of G = 33,5 K/mm and growth rate of v = 125 μm/s (450 mm/h). The Bridgman technique was used for the solidification process. The sample was grown by pulling it downwards up to 30 mm in length. The alloy quenched by rapid pulling down into the Ga-In-Sn liquid metal. The sample was examined on the longitudinal section using a light microscope and scanning electron microscope. The shape of the solid/liquid interface and particularly the leading phase protrusion were revealed. The formation of the concave – convex interface has been identified in the quasi-regular eutectic growth arrested by quenching. The cementite phase was determined to be a leading phase. The total protrusion d is marked in the adequate figure.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The current work is dedicated to the mathematical description of a protrusion of the leading phase (cementite) over the wetting phase (austenite) observed during the author’s experiments in previous articles. A cementite protrusion is confirmed in the directionally solidified Fe-4.25% C eutectic alloy. The protrusion is defined due to the mass balance fulfilment. A coordinate system is attached to the solid/liquid interface, which is moving with the constant growth rate v.
Go to article

Bibliography

[1] E . Cadirli, H. Kaya, M. Gunduz, Materials Research Bulletin 38, 1457-1476 (2003).
[2] G .J. Davies, Solidification and casting, Wiley (1973).
[3] V .L. Davies, Journal of the Institute of Metals 93, 10-14 (1964-65).
[4] M. Hillert, V.V. Subba Rao, Iron and Steel Intitute Publication 110, 204-212 (1968).
[5] D .M. Stefanescu, Eutectic solidification, Science and Engineering of Casting Solidification, Springer 207 (2015).
[6] E . Fraś, Krystalizacja metali, Wydawnictwo Naukowo Techniczne, Warszawa (2003).
[7] M. Trepczyńska-Łent, Archives of Foundry Engineering 13 (3), 101-106 (2013).
[8] M. Trepczyńska-Łent, Archives of Metallurgy and Materials 58 (3), 987-991. (2013). DOI : https://doi.org/10.2478/amm-2013-0116
[9] M. Trepczyńska-Łent, Archives of Foundry Engineering 16 (4), 169-174 (2016). DOI : https://doi.org/10.1515/afe-2016-0104
[10] M. Trepczyńska-Łent, Archives of Metallurgy and Materials 62 (1), 365-368 (2017). DOI : https://doi.org/10.1515/amm-2017-0056
[11] M. Trepczyńska-Łent, Crystal Research and Technology 52 (7), 1600359 (2017). DOI : https://doi.org/10.1002/crat.201600359
[12] M. Trepczyńska-Łent, Archives of Foundry Engineering 19 (4), 113-116 (2019).
[13] E . Guzik, A model of irregular eutectic growth taking as an example the graphite eutectic in Fe-C alloys. Dissertations Monographies 15, AGH Kraków (1994).
[14] P . Magnin, W. Kurz, Acta Metall. 35, 1119 (1987).
[15] J.D Hunt., K.A Jackson, Trans Metall. Soc. AI ME 236, 843-852 (1966).
[16] K .A. Jackson, J.D. Hunt, Transactions of the Metallurgical Society of AI ME 236, 1129-1142 (1966).
[17] W Wołczyński, Defect and Diffusion Forum 272, 123-138 (2007).
[18] W. Wołczyński, Archives of Metallurgy and Materials 63 (1), 65-72 (2018).
[19] G .A Chadwick, Eutectic Alloy Solidification, Chapter 2 in: Progress in Materials Science. Pergamon Press, Headington Hill Hall, Oxford (1964).
[20] W. Wołczyński, Crystal Research and Technology 25 (1), 1303- 1309 (1990).
[21] W. Wołczyński, Archives of Metallurgy and Materials 65 (2), 653-666 (2020). DOI : https://doi.org/10.24425/amm.2020.132804
Go to article

Authors and Affiliations

M. Trepczyńska-Łent
1
ORCID: ORCID

  1. UTP University of Science and Technology, Mechanical Engineering Faculty, Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

One type of spheroidal cast iron, with additions of 0.51% Cu and 0.72% Ni, was subjected to precipitation hardening. Assuming that the

greatest increase in hardness after the shortest time of ageing is facilitated by chemical homogenisation and fragmentation of cast iron

grain matrix, precipitation hardening after pre-normalisation was executed. Hardness (HB), microhardness (HV), qualitative and

quantitative metalographic (LM, SEM) and X-ray structural (XRD) tests were performed. The acquired result of 13.2% increase in

hardness after ca. 5-hour ageing of pre-normalised cast iron confirmed the assumption.

Go to article

Authors and Affiliations

T. Szykowny
M. Trepczyńska-Łent
T. Giętka
Ł. Romanowski
Download PDF Download RIS Download Bibtex

Abstract

The study presents methods to be used for improving the performance parameters of car engine pistons made of EN AC-AlSi12CuNiMg alloy according to the PN-EN 1706: 2011. Pistons of slow sucking and turbocharged engines were researched. A solution heat and ageing treatments were applied according to four variants. Temperatures of the solution heat treatment were: 550 ±5°C; 510°C ±5°C; and alternate: 276 ±5°C/510 ±5°C. The solution time ranged from 6 min to 4 h. Temperatures of the ageing heat treatment were 20°C and 250°C, while the ageing time ranged from 1,5 to 3h. Natural ageing was performed in 5 days. Measurements of hardness HRB and the piston diameters were performed. An improvement in the performance parameters of combustion engines was observed. Three solution heat treatment and ageing variants, allowed to obtain the pistons with hardness equal/higher than pistons of the turbocharged engines. The test results confirmed the possibility of providing a piston with properties exceeding the high load parameters specified by the manufacturer. Further studies will make it possible to improve the effects of the proposed solutions.
Go to article

Bibliography

[1] Stone, R. (2012). Introduction to Internal Combustion Engines. Fourth Edition, SAE and Macmillan.
[2] Heywood, J.B. (2018). Internal Combustion Engines Fundamentals, Second Edition, McGraw-Hill Education.
[3] Kirkpatrick, A.T. (2020). Internal Combustion Engines: Applied Thermosciences. Fourth Edition, John Wiley & Sons.
[4] Bosch, R. (2018). Automotive Handbook. 10th Edition: Robert Bosch GmbH
[5] Siemińska-Jankowska, B. & Pietrowski, S. (2003). The effects of temperature on strength of the new piston aluminum materials. Journal of KONES Internal Combustion Engines. 10(1-2), 237-250.
[6] Wajand, A., Wajand, J. (2005). Reciprocating internal combustion engines. Wydawnictwa Naukowo Techniczne PWN. (in Polish).
[7] Manasijevic, S., Pavlovic-Acimovic, Z., Raic, K., Radisa, R. & Kvrgi´c, V. (2013). Optimisation of cast pistons made of Al–Si piston alloy. International Journal of Cast Metals Research. 26(5), 255-261.
[8] Javidani, M. & Larouche, D. (2014). Application of cast Al–Si alloys in internal combustion engine components. International Materials Reviews. 59(3), 132-158.
[9] Pietrowski, S. (2001) Silumins. Łódź: Wydawnictwo Politechniki Łódzkiej. (in Polish).
[10] Poniewierski, Z. (1989). Crystallization, Structure and Mechanical Properties of Silumins. Warszawa: WNT. (in Polish).
[11] Kaufman, J.G., Rooy, E.L. (2004). Aluminum Alloy Castings: Properties, Processes and Applications. ASM International.
[12] Zolotorevsky, V.S., Belov, N.A., Glazoff, M.V. (2007). Casting Aluminium Alloys. Elsevier: Oxford, UK, pp. 327-376.
[13] Pezda, J. (2015). The effect of the T6 head treatment on change of mechanical properties of the AlSi12CuNiMg alloy modified with strontium. Archives of Metallurgy and Materials. 60(2), 627-632.
[14] Czekaj, E., Fajkiel, A. & Gazda, A. (2005). Short-lived ultrahigh temperature silicon spheroidization treatment of silumins. Archiwum Odlewnictwa. 5(17), 51-68. (in Polish).
[15] Dobrzański, L.A., Reimann, L. & Krawczyk, G. (2008). Influence of the ageing on mechanical properties of the aluminium alloy AlSi9Mg. Archives of Materials Science and Engineering. 31, 37-40.
[16] Pezda, J. (2010). Heat treatment of EN AC-AlSi13Cu2Fe silumin and its effect on change of hardness of the alloy. Archives of Foundry Engineering. 10(1), 131-134.
[17] Pezda, J. (2014). Effect of a selected heat treatment parameters on technological quality of a silumin-cast machinery components; Bielsko-Biała: ATH Scientific Publishing House: Bielsko-Biała, Poland.
[18] Pezda, J. & Jarco, A. (2016). Effect of T6 heat treatment parameters on technological quality of the AlSi7Mg alloy. Archives of Foundry Engineering. 16(4), 95-100.
[19] Czekaj, E., Kwak, Z., Garbacz-Klempka, A. (2017). Comparison of impact of immersed and micro-jet cooling during quenching on microstructure and mechanical properties of hypoeutectic silumin AlSi7Mg0.3. Metallurgy and Foundry Engineering. 43(3), 153-168.
[20] Pezda, J. & Jezierski, J. (2020). Non-standard T6 heat treatment of the casting of the combustion engine cylinder head. Materials. 13(18), 4114.
[21] Jarco, A. & Pezda, J. (2021). Effect of heat treatment process and optimization of its parameters on mechanical properties and microstructure of the AlSi11(Fe) alloy. Materials (Basel) 14(9), 2391.
[22] Nikitin, K.V., Chikova, O.A., Amosov, E.A. & Nikitin, V.I. (2016). Shortening the time of heat treatment of silumins of the Al – Si – Cu system by modifying their structure. Metal Science and Heat Treatment. 58(7), 400-404.
[23] Prudnikov, A., Prudnikov, V. (2019). The mode of hardening heat treatment for deformable piston hypereutectic silumins. International Scientific Journal Materials science. Non-equilibrium phase transformations. 5(3), 74-77.
[24] Kantoríková, E., Kuriš, M. & Pastirčák, R. (2021). Heat treatment of AlSi7Mg0.3 Aluminium alloys with increased zirconium and titanium content. Archives of Foundry Engineering. 21(2), 89-93.
[25] Kuriš, M., Bolibruchova, D. M., Matejka M. & Kantoríková, E. (2021). Effect of the precipitation hardening on the structure of AlSi7Mg0.3Cu0.5 alloy with addition of Zr and combination of Zr and Ti. Archives of Foundry Engineering. 21(1), 95-100.
[26] Rychter, T., Teodorczyk, A. (2006). Theory of piston engines. Wydawnictwa Komunikacji i Łączności. (in Polish).

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
1
ORCID: ORCID
K. Műller
2

  1. Mechanical Engineering Faculty, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  2. Bergerat Monnoyeur Sp. z o.o. – Caterpillar, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the microsegregation of Mn, Mo, Cr, W, V, Si, Al, Cu and P in the white cast iron. Eutectic alloy with the content of 4.25% C was studied. The white cast iron was directionally solidified in the vacuum Bridgman-type furnace at a constant pulling rate v = 83 μm/s and v = 167 μm/s and at a constant temperature gradient G = 33.5 K/mm. The microstructural research was conducted using light and scanning electron microscopy. The microsegregation of elements in ledeburite was evaluated by EDS measurements. Content of elements in ledeburitic cementite and ledeburitic pearlite was determined. The tendency of elements to microsegregation was found dependent on the solidification rate. Microsegregation of elements between pearlite and cementite structural constituents has been specified. The effect of solidification rate on the type and intensity of microsegregation in directionally solidified eutectic white cast iron was observed. A different type of microsegregation was observed in the components of ledeburite in cementite and pearlite.
Go to article

Bibliography

[1] Podrzucki, Cz. (1991). Cast iron. Structure. Properties. Application T.1 and T.2, First Edition, Publishing house ZG STOP. (in Polish)
[2] Sękowski, K. (1973). Heterogeneity of the chemical composition of the metal matrix of ductile iron. Foundry Review. 8-9, 205-255413. (in Polish)
[3] Pietrowski, S. (1987). The influence of the chemical composition of nodular cast steel and cast iron and casting cooling rate on the austenite transformation to acicular structures. Scientific Books nr 94: Technical University of Łódź. (in Polish)
[4] Pietrowski, S. & Gumienny, G. (2006). Crystallization of nodular cast iron with additions of Mo, Cr, Cu and Ni. Archives of Foundry. 6(22), 406-413. (in Polish)
[5] Pietrowski, S. & Gumienny, G. (2012). Microsegregation in nodular cast iron with carbides. Archives of Foundry Engineering. 12(4), 127-134. DOI: 10.2478/v10266-012-0120-z.
[6] Sandoz, G. (1968). Recent Research in Cast Iron, H. Marchant, ed. New York: Gordon and Breach, 509.
[7] Malinochka, Ya.N., Maslenkov, S.B. & Egorshina, T.V. (1963). Investigation of microsegregation in cast iron using electron microprobe. Liteinoe Proizvodstvo, 1, 22-25. (in Russ.)
[8] Swindelsand, N. & Burke, J. (1971). Silicon microsegregation and first stag graphitization in white cast irons. Metallurgical Transactions. 2, 3257-3263. DOI: 10.1007/BF02811605
[9] Charbonnier, J. & Margerie, J.C. (1967). Nouvelle contribution al’etude generale des mikrosegregation dans les alliages Fe-C du type ”fonte”. Fonderie. 259, 333-344.
[10] Bazhenov, V.E., & Pikunov, M.V. (2018) Microsegregation of silicon in cast iron. Izvestiya. Ferrous Metallurgy. 61(3), 230-236. DOI: 10.17073/0368-0797-2018-3-230-236 (in Russ.)
[11] Park, J.Y. and other (2002). Effect of Mn negative segregation through the thickness direction on graphitization characteristics of strip-cast white cast iron. Scripta Materialia 46(3), 199-203. https://doi.org/10.1016/S1359-6462(01)01220-9
[12] Dojka, M. & Stawarz, M. (2020). Bifilm defects on Ti-inculated chromium white cast iron. Materials. 13(14), 3124. https://doi.org/10.3390/ma13143124
[13] Trepczyńska-Łent, M. (1997). Spheroidizing annealing of whitened ductile iron. 1st National Scientific Conference "Materials Science - Foundry - Quality", 129-137, Krakow. (in Polish)
[14] Trepczyńska-Łent, M. (1998). Microsegregation of silicon and manganese after spheroidizing annealing in cast iron with spherical graphite. Scientific Journals ATR 216, Mechanics. 43, 217-226. Bydgoszcz (in Polish).
[15] Chang, W.S. & Lin, C.M. (2013). Relationship between cooling rate and microsegregation in bottom-chilled directionally solidified ductile irons. Journal of Mining and Metallurgy, Section B: Metallurgy. 49(3)B, 315-322. https://doi.org/10.2298/JMMB120702034C.
[16] Trepczyńska-Łent, M. Boroński D. & Maćkowiak P. (2021). Mechanical properties and microstructure of directionally solidified Fe-4.25%C eutectic alloy. Materials Science and Engineering A, 822(3) 141644. https://doi.org/10.1016/j.msea.2021.141644.
[17] Trepczyńska-Łent, M. (2017). Interphase spacing in directional solidification of white carbide eutectic, METAL 2017 - 26th International Conference on Metallurgy and Materials, Conference Paper, Conference Proceedings Volume 2017-January 254-260. ISBN: 978-808729479-6.
[18] Trepczyńska-Łent, M. (2017). Directional solidification of Fe-Fe3C white eutectic alloy. Crystal Research and Technology 52(7) July 2017, 1600359, version of record online: 26 JUN 2017. DOI: 10.1002/crat.201600359.
Go to article

Authors and Affiliations

M. Trepczyńska-Łent
1
ORCID: ORCID
J. Seyda
1
ORCID: ORCID

  1. Bydgoszcz University of Science and Technology, Poland

This page uses 'cookies'. Learn more