Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Three-dimensional (3D) printed model of the renal vasculature shows a high level of accuracy of subsequent divisions of both the arterial and the venous tree. However, minor artifacts appeared in the form of oval endings to the terminal branches of the vascular tree, contrary to the anticipated sharply pointed segments. Unfortunately, selective laser sintering process does not currently permit to present the arterial, venous and urinary systems in distinct colors, hence topographic relationship between the vas-cular and the pelvicalyceal systems is difficult to attain. Nonetheless, the 3D printed model can be used for educational purposes to demonstrate the vast renal vasculature and may also serve as a reference model whilst evaluating morphological anomalies of the intrarenal vasculature in a surgical setting.
Go to article

Bibliography

1. Djonov V., Burri P.H.: Corrosion cast analysis of blood vessels. In Methods in Endothelial Cell Biology. Springer, Berlin, Heidelberg 2004; 357–369.
2. Mansur D.I., Karki S., Mehta D.K., Shrestha A., Dhungana A.: A Study on Variations of Branching Pattern of Renal Artery with its Clinical Significance. Kathmandu Univ Med J. 2019; 17 (66): 136–140. PMID: 32632062.
3. Wróbel G.: Visualization of blood vessels by corrosion technique. J Educ Health Sport. 2017; 7 (9): 283–291.
4. Rueda Esteban R.J., López McCormick J.S., Martínez Prieto D.R., Hernández Restrepo J.D.: Corrosion casting, a known technique for the study and teaching of vascular and duct structure in anatomy. Int J Morphol. 2017; 34 (3): 1147–1153. https://doi.org/10.4067/s0717-95022017000300053
5. Musiał A., Gryglewski R., Kielczewski S., Loukas M., Wajda J.: Formalin use in anatomical and histological science in the 19th and 20th centuries. Folia Med Cracov. 2016; 56 (3): 31–40. PMID: 28275269.
6. Bernhard J.C., Isotani S., Matsugasumi T., Duddalwar V., Hung A.J., Suer E., Baco E., Satkunasivam R., Djaladat H., Metcalfe C., Hu B., Wong K., Park D., Nguyen M., Hwang D., Bazargani S.T., de Castro Abreu A.L., Aron M., Ukimura O., Gill I.S.: Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol. 2016; 34 (3): 337–345. doi: 10.1007/s00345-015-1632-2. PMID: 26162845.
7. Bücking T.M., Hill E.R., Robertson J.L., Maneas E., Plumb A.A., Nikitichev D.I.: From medical imaging data to 3D printed anatomical models. PLoS One. 2017; 12 (5): e0178540. doi: 10.1371/journal.pone.0178540. PMID: 28562693; PMCID: PMC5451060.
8. Marro A., Bandukwala T., Mak W.: Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications. Curr Probl Diagn Radiol. 2016; 45 (1): 2–9. doi: 10.1067/j.cpradiol.2015.07.009. PMID: 26298798.
9. Holzem K.M., Jayarajan S., Zayed M.A.: Surgical planning with three-dimensional printing of a complex renal artery aneurysm. J Vasc Surg Cases Innov Tech. 2018; 4 (1): 19. doi: 10.1016/j.jvscit.2016.08.004. PMID: 29541692.
10. Lin J.C., Myers E.: Three-dimensional printing for preoperative planning of renal artery aneurysm surgery. J Vasc Surg. 2016; 64 (3): 810. doi: 10.1016/j.jvs.2015.12.061. PMID: 27565599.
11. Javan R., Herrin D., Tangestanipoor A.: Understanding Spatially Complex Segmental and Branch Anatomy Using 3D Printing: Liver, Lung, Prostate, Coronary Arteries, and Circle of Willis. Acad Radiol. 2016; 23 (9): 1183–1189. doi: 10.1016/j.acra.2016.04.010. PMID: 27283072.
12. McMenamin P.G., Quayle M.R., McHenry C.R., Adams J.W.: The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ. 2014; 7 (6): 479–486. doi: 10.1002/ase.1475. PMID: 24976019.
13. Skrzat J., Zdilla M.J., Brzegowy P., Hołda M.: 3D printed replica of the human temporal bone intended for teaching gross anatomy. Folia Med Cracov. 2019; 59 (3): 23–30. doi: 10.24425/fmc.2019.131133. PMID: 31891357.
14. Augustyn M.: Variation of the calicopelvic system of the human kidney in ontogenetic development. Folia Morphol (Warsz). 1978; 37 (2): 157–165. PMID: 308905.
15. Brödel M.: The intrinsic blood vessels of the kidney. Bull. Johns Hopkins Hosp. 1901; 12: 10–18.
16. Ajmani M.L., Ajmani K.: To study the intrarenal vascular segments of human kidney by corrosion cast technique. Anat Anz. 1983; 154 (4): 293–303. PMID: 6660543.
17. Garg A.K., Garg N., Kaushik R.K., Garg A.: A Review of Vascular Pattern of Human Kidney by Corrosion Cast Technique. Medico-Legal Update. 2012; 12 (2): 22–25.
18. Longia G.S., Kumar V., Gupta C.D.: Intrarenal arterial pattern of human kidney-corrosion cast study. Anat Anz. 1984; 155 (1–5): 183–194. PMID: 6721181.
19. Botsch M., Kobbelt L., Pauly M., Alliez P., Lévy B.: Polygon mesh processing. 2010; AK Natic Ltd, Massachusetts / CRC Press.
20. Cignoni P., Callieri M., Corsini M., Dellepiane M., Ganovelli F., Ranzuglia G.: Meshlab: an open- source mesh processing tool. In Eurographics Italian chapter conference. 2008; 29–136.
Go to article

Authors and Affiliations

Janusz Skrzat
1
Katarzyna Heryan
2
Jacek Tarasiuk
3
Sebastian Wroński
3
Klaudia Proniewska
4
Piotr Walecki
4
Michał Zarzecki
1
Grzegorz Goncerz
1
Jerzy Walocha
1

  1. Jagiellonian University Medical College, Department of Anatomy, Kraków, Poland
  2. AGH University of Science and Technology, Department of Measurement and Electronics, Kraków, Poland
  3. AGH University of Science and Technology, Department of Condensed Matter Physics, Kraków, Poland
  4. Jagiellonian University Medical College, Department of Bioinformatics and Telemedicine, Kraków, Poland

This page uses 'cookies'. Learn more