Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The work concerns the dynamic behaviour of a porous, isothermal catalyst pellet in which a simultaneous chemical reaction, diffusion and adsorption take place. The impact of the reactant adsorption onto the pellet dynamics was evaluated. A linear isotherm and a non-linear Freundlich isotherm were considered. Responses of the pellet to sinusoidal variations of the reactant concentration in a bulk gas were examined. It was demonstrated that the dynamics of the pellet is significantly affected both by accounting for the adsorption and by the frequency of the bulk concentration variations. The sorption phenomenon causes damping of the concentration oscillations inside the pellet and damping of its effectiveness factor oscillations. Depending on the frequency of the concentration oscillations in the bulk, the remarkable oscillations can involve an entire volume of the pellet or its portion in the vicinity of the external surface.

Go to article

Authors and Affiliations

Katarzyna Bizon
Bolesław Tabiś
Download PDF Download RIS Download Bibtex

Abstract

A simple analytical method for determination of basic hydrodynamic characteristics of hybrid fluidized-bed air-lift devices was presented. These devices consist of two parts: a two-phase air-lift part and a two-phase liquid-solid fluidized-bed part. Forced circulation of fluid in the air-lift part is used for fluidization of solid particles in the fluidized-bed part. According to the opinion given in the literature, if such apparatus is used for aerobic microbiological processes, its advantage is lower shear forces acting on the biofilm immobilized on fine-grained material compared with shear forces in three-phase fluidized-bed bioreactors. Another advantage is higher biomass concentration due to its immobilization on fine particles, compared with two-phase airlift bioreactors. A method of calculating gas hold-up in the air-lift part, and gas and liquid velocities in all zones of the analyzed apparatus is presented.

Go to article

Authors and Affiliations

Bolesław Tabiś
Dominika Boroń
Download PDF Download RIS Download Bibtex

Abstract

A mathematical model for a two-phase fluidised bed bioreactor with liquid recirculation and an external aerator was proposed. A stationary nonlinear analysis of such a bioreactor for an aerobic process with double-substrate kinetics was carried out. The influences of a volumetric fraction of solid carriers in the liquid phase, the rate of active biomass transfer from the biofilm to the liquid, the concentration of carbonaceous substrate, the mean residence time of the liquid and the efficiency of the external aerator on the steady state characteristics of the bioreactor were described. A method for determination of the minimal recirculation ratio related to oxygen demand and fluidised bed conditions was presented. On the basis of the obtained results, it is possible to choose reasonable operating conditions of such plants and to determine constraints, while considering acceptable concentrations of a toxic substrate being degraded.

Go to article

Authors and Affiliations

Bolesław Tabiś
Wojciech S. Stryjewski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents modeling and simulation results of the operation of a three-phase fluidized bed bioreactorwith partial recirculation of biomass. The proposed quantitative description of the bioreactor takes into account biomass growth on inert carriers, microorganisms decay and interphase biomass transfer. Stationary characteristics of the bioreactor and local stability of steady-stateswere determined. The influence of microbiological growth kinetics on the multiplicity of steady-states was discussed. The relationship between biofilm growth and boundaries of fluidized bed existence was shown.

Go to article

Authors and Affiliations

Szymon Skoneczny
Bolesław Tabiś
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the dynamic characteristics of a continuous tank bioreactor for microbiological process, with a developed predator-prey food chain. The presence of the predator microorganism considerably influences the position and stability character of steady-states. There appears to exist a wide range of unstable steady-states and high-amplitude oscillations of state variables. Without automatic control, the system can operate only in unsteady conditions. From technological point of view, this circumstance is unfavorable. It was shown that oscillations can be removed by employing automatic control with continuous P or PI controllers. Moreover, the use of a controller with integrating element causes removal of the predator from the bioreactor. The paper discusses an application of this phenomenon for practical purposes.

Go to article

Authors and Affiliations

Bolesław Tabiś
Szymon Skoneczny
Wojciech S. Stryjewski
Download PDF Download RIS Download Bibtex

Abstract

A mathematical model of a plane, steady state biofilm, with the use of a single substrate kinetics, was proposed. A set of differential equations was solved. In order to analyse the biofilm’s behaviour, a number of simulations were performed. The simulations included varying process parameters such as detachment coefficient and substrate loading. Two detachment models were taken into consideration: one describing the detachment ratio as proportional to the thickness of the biofilm, and the other one proportional to the thickness of the biofilm squared. The results provided information about substrate and live cell distribution in biofilm and the influence of certain parameters on biofilm behaviour.

Go to article

Authors and Affiliations

Stanisław Ledakowicz
Michał Blatkiewicz
Bolesław Tabiś
Download PDF Download RIS Download Bibtex

Abstract

The study addresses two groups of issues occurring in modeling and experimental studies of multicomponent nonisobaric diffusion in macroporous materials. The dynamics of such processes is described in terms of systems of nonlinear partial differential equations. A method of orthogonal collocation for resolving the equations is proposed and compared with the method of lines. The second group of problems presented involves numerical simulations of diffusion in aWicke–Kallenbach diffusion cell. Such an apparatus is used in experimental studies. Particular attention is paid to diffusion in a cell closed from both sides. This is an analogue of the Duncan–Toor experiment. The effect of the number of diffusing components and their initial concentrations on the dynamics of diffusion in binary and ternary solution was studied. Hitherto unknown dynamic properties of such processes were detected and discussed.
Go to article

Bibliography

Arnold K.R., Toor H.L., 1967. Unsteady diffusion in ternary gas mixtures. AIChE J., 13, 909–914. DOI: 10.1002/aic.690130518.
Arnošt D., Schneider P., 1995. Dynamic transport of multicomponent mixtures of gases in porous solids. Chem. Eng. J., 57, 91–99. DOI: 10.1016/0923-0467(94)02900-8.
Boron D., 2020. Izobaryczna metoda stacjonarna wyznaczania współczynników dyfuzji w materiałach porowatych. Przem. Chem., 99, 785–788. DOI: 10.15199/62.2020.5.21.
Boron D., Tabis B., 2020. Udział i znaczenie przepływu lepkiego w nieizobarycznej dyfuzji gazów przez materiały porowate. Przem. Chem., 99, 1717–1716. DOI: 10.15199/62.2020.12.4.
Duncan J.B., Toor H.L., 1962. An experimental study of three component gas diffusion. AIChE J., 8, 38–41. DOI: 10.1002/aic.690080112.
Finlayson B.A., 1972. The method of weighted residuals and variational principles. Academic Press, New York. DOI: 10.1137/1.9781611973242.
Gear C.W., 1971. Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, New Jersey.
Ho C.K., Webb S.W. (Eds.), 2006. Gas transport in porous media. Springer, Netherlands. DOI: 10.1007/1-4020-3962-X.
Krishna R., Wesseling J.A., 1997. The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci., 52, 861–911. DOI: 10.1016/S0009-2509(96)00458-7.
Mason E.A., Malinauskas A.P., 1983. Gas transport in porous media: The dusty gas model. Elsevier, Amsterdam.
Remick R.R., Geankoplis C.J., 1970. Numerical study of three-component gaseous diffusion equations in transition region between Knudsen and molecular diffusion. Ind. Eng. Chem. Fundam., 9, 206–210. DOI: 10.1021/i160034a003.
Remick R.R., Geankoplis C.J., 1974. Ternary diffusion of gases in capillaries in the transition region between Knudsen and molecular diffusion. Chem. Eng. Sci., 29, 1447–1455. DOI: 10.1016/0009-2509(74)80169-7.
Schiesser W.E., 1991. Numerical methods of lines integration of partial differential equations. Academic Press, San Diego.
Tabis B., Bizon K. 2020. Opracowanie metody linii do całkowania dynamiki dyfuzji wieloskładnikowej w materiałach makroporowatych. Prace Katedry Inzynierii Chemicznej i Procesowej Politechniki Krakowskiej.
Tabis B., Bizon K., 2018. Dyfuzyjny ruch masy. Dyfuzja w gazach doskonałych i płynach rzeczywistych. Wydawnictwa Politechniki Krakowskiej, Kraków.
Tabis B., Boron D., 2020. Application of the dusty gas model for determining structural parameters of porous media. Przem. Chem., 99, 888–891. DOI: 10.15199/62.2020.6.11.
Tuchlenski A., Uchytil P., Seidel-Morgenstern A., 1998. An experimental study of combined gas phase and surface diffusion in porous glass. J. Membr. Sci., 140, 165–184. DOI: 10.1016/S0376-7388(97)00270-6.
Veldsink J.W., Versteeg G.F., van SwaaijW.M.P., 1994. An experimental study of diffusion and convection of multicomponent gases through catalytic and non-catalytic membranes. J. Membr. Sci., 92, 275–291. DOI: 10.1016/0376-7388(94)00087-5.
Yang J., Cermáková J., Uchytil P., Hamel C., Seidel-Morgenstern A., 2005. Gas phase transport, adsorption and surface diffusion in a porous glass membrane. Catal. Today, 104, 344–351. DOI: 10.1016/j.cattod.2005.03.069.
Go to article

Authors and Affiliations

Katarzyna Bizon
1
ORCID: ORCID
Bolesław Tabiś
1

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland

This page uses 'cookies'. Learn more