Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper, differential quadrature method (DQM) is used to find numerical solutions of reaction-diffusion equations with different boundary conditions. The DQM-method changes the reaction- diffusion equation (ordinary differential equation) into a system of algebraic equations. The obtained system is solved using built-in procedures of Maple®(Computer Algebra System-type program). Calculations were performed with Maple®program. The test problems include reaction-diffusion equation applied in heterogeneous catalysis. The method can be employed even in relatively hard tasks (e.g. ill-conditioned, free boundary problems).

Go to article

Authors and Affiliations

Mirosław K. Szukiewicz
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a new simple method for determination of flow parameters, axial dispersion coefficients DL and Péclet numbers Pe was presented. This method is based on an accurate measurement model considering pulse tracer response. Our method makes it possible to test the character of gas flow motion and precisely measure flow parameters for different pressures and temperatures. The idea of combining the transfer function, numerical inversion of the Laplace transform and optimisation method gives many benefits like a simple and effective way of finding solution of inverse problem and model coefficients. The calculated values of flow parameters (DL and/or Pe) suggest that in the considered case the gas flow is neither plug flow nor perfect mixing under operation condition. The obtained outcomes agree with the gas flow theory. Calculations were performed using the CAS program type, Maple®.
Go to article

Authors and Affiliations

Małgorzata Wójcik
Mirosław Szukiewicz
Download PDF Download RIS Download Bibtex

Abstract

A series of steps taken to determine a kinetic equation that describes hydrogenation of propene on nickel catalyst is presented in this study. Mixed factorial design approach, belongs to designing of experiments methods was used to plane experiments. The investigations showed that the method applied makes possible determination of the kinetic equation in a relatively fast and cheap manner since only a few measurement points is required. The equation obtained was verified experimentally and statistically. Both tests showed satisfactory precision of anticipated values of the process rate.
Go to article

Bibliography

Aaserud C., Hilmen A.-M., Bergene E.S.E., Schanke D., Holmena A., 2004. Hydrogenation of propene on cobalt Fischer–Tropsch catalysts. Catal. Lett., 94, 171–176. DOI: 10.1023/B:CATL.0000020541.28174.c7.
Ahmadigoltapeh, S., Mehranbod, N., Halimejani, H.Z., 2015. Propylene hydrogenation through structured and con- ventional catalyst beds: Experiment and modelling. J. Nat. Gas Sci. Eng., 27, 822–830. DOI: 10.1016/j.jngse.2015.09.030.
Brandao L., Fritsch D., Madeira LM., Mendes A.M., 2004. Kinetics of propylene hydrogenation on nanostructured palladium clusters. Chem. Eng. J., 103, 89–97. DOI: 10.1016/j.cej.2004.07.008.
Carturan G., Enzo S., Ganzerla R., Lenarda M., Zanoni R., 1990. Role of solid-state structure in propene hydro- genation with nickel catalysts. J. Chem. Soc. Faraday Trans., 86, 739–746. DOI: 10.1039/ft9908600739.
Esfe M.H.,. Rsotamian H, Shabani-Samghabadi A., Arani A.A.A., 2017. Application of three-level general fac- torial design approach for thermal conductivity of MgO/ water nanofluids. Appl. Therm. Eng., 127, 1194–1199. DOI: 10.1016/j.applthermaleng.2017.07.211.
Montgomery D.C., 2017. Design and analysis of experiments. 9th ed., Wiley.
Özbay N., Yargıç A.Ş., Yarbay-Şahin R.Z., Önal E., 2013. Full factorial experimental design analysis of reactive dye removal by carbon adsorption. J. Chem., 234904. DOI: 10.1155/2013/234904.
Pachulski A., Schödel R., Claus P., 2012. Kinetics and reactor modeling of a Pd-Ag/Al2O3 catalyst during selective hydrogenation of ethyne. Appl. Catal., A, 445–446, 107–120. DOI: 10.1016/j.apcata.2012.08.018.
Schweitzer NM., Hu B., Das U., Hacksung K., Greeley J., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S., 2014. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal., 4, 1091–1098. DOI: 10.1021/cs401116p.
Sen G.A., 2016. Application of full factorial experimental design and response surface methodology for chromite beneficiation by Knelson concentrator. Minerals, 6, 5. DOI: 10.3390/min6010005.
Szukiewicz M., Chmiel-Szukiewicz E., Kaczmarski K., Szałek A., 2019. Dead zone for hydrogenation of propylene atalyst pellets. Open Chem., 17, 295–301. DOI: 10.1515/chem-2019-0037.
Go to article

Authors and Affiliations

Adrian Szałek
1
Mirosław Szukiewicz
1
Elżbieta Chmiel-Szukiewicz
1

  1. Rzeszów University of Technology, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more