Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper the development and method of production of modern, Ni-free sintered structural steels containing Cr, Mn and Mo, enabling the production of structural sintered steels in industrial conditions, using safe, with low H2-content, sintering atmospheres is presented. For this purpose, the analysis of microstructure and mechanical properties of these sintered structural steels produced in different processing conditions and also the connections between the microstructure of sintered material and its mechanical properties, was presented. Following the investigations, the appropriate chemical composition of sintered Ni-free steels with properties which are comparable or even better than those of sintered structural steels containing rich and carcinogenic nickel was choosen. Additionally, in the paper the properties of electrolitically coated carbon steels were presented, as the beginning of investigation for improving the mechanical properties of alloyed, structural sintered steels.

Go to article

Authors and Affiliations

M. Sułowski
M. Tenerowicz-Żaba
R. Valov
V. Petkov
Download PDF Download RIS Download Bibtex

Abstract

Electrochemical Cr coatings doped with diamond nanoparticles were deposited on sintered steels with different carbon contents (0.2-0.8 wt.-%). The mechanical properties of surfaces as hardness and wear resistance increase as compared to the steel substrate. Microcutting and microgridding mechanisms were observed after tribological tests, but also adhesive wear in some areas was observed. X-ray examination indicated that the layer was textured, with the exception of the sample with the highest concentration of diamond nanoparticles in the electrolyte (42 g/l). The intensity ratio ICr110/ICr200 was calculated and compared with the indices for a standard sample. The greatest differences in the intensity ratio occurred for the samples with low carbon content (0.2%C). On the other hand, more the material is textured the greater the difference.

Go to article

Authors and Affiliations

V. Petkov
R. Valov
M. Witkowska
M. Madej
G. Cempura
M. Sułowski

This page uses 'cookies'. Learn more