Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 30
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper, presented is a research on effectiveness of absorbing electromagnetic waves at frequency 2.45 GHz by unhardened moulding

sands prepared of three kinds of high-silica base and a selected grade of sodium silicate. Measurements of power loss of microwave

radiation (Pin) expressed by a total of absorbed power (Pabs), output power (Pout) and reflected power (Pref) were carried-out on a stand of

semiautomatic microwave slot line. Values of microwave power loss in the rectangular waveguide filled with unhardened moulding sands

served for determining effectiveness of microwave heating. Balance of microwave power loss is of technological and economical

importance for manufacture of high-quality casting moulds and cores of various shapes and sizes. It was found that relative density

influences parameters of power output and power reflected from samples of moulding sand placed in a waveguide. Absorption expressed

by the parameter Pabs is not related to granularity of high-silica base: fine, medium and coarse. It was found that the semiautomatic

microwave slot line supports evaluation of effectiveness of microwave absorption on the grounds of power loss measurements and enables

statistic description of influence of relative density of the sandmix on penetration of electromagnetic waves in unhardened moulding sands.

Go to article

Authors and Affiliations

M. Stachowicz
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented are results of a research on effectiveness of absorbing electromagnetic waves at frequency 2.45 GHz by unhardened sodium silicate base sands (SSBS) prepared of high-silica base sand and a PLA (Polylactide) 3D-prited (3DP) mould walls. Measurements of power loss of microwave radiation (P in) expressed by a total of absorbed power (P abs), output power (P out) and reflected power (P ref) were carried-out on a stand of semiautomatic microwave slot line for determining balance of microwave power emitted into selected multimaterial systems. Values of microwave power loss in the rectangular waveguide filled with unhardened moulding sands and prepared by fused deposition modelling (FDM) 5 mm polylactide (PLA) walls with grid infill density from 25% to c.a. 100% served for determining effectiveness of microwave heating. Balance of microwave power loss is of technological importance for microwave manufacture of high-quality casting sand moulds and cores in possibility of use 3D-printed mould tools and core boxes. It was found that apparent density of SSBS placed in a waveguide with PLA walls influences parameters of power output (P out) and power reflected (P ref). The PLA wall position and grid infill density were identified to have a limited effect on effectiveness of absorbing microwaves (P abs).
Go to article

Authors and Affiliations

M. Stachowicz
1
ORCID: ORCID

  1. Wroclaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Presented are results of a research on usability of an innovative reclamation process of microwave-hardened moulding sands containing

water-glass, combined with activation of binder. After each subsequent stage of reclamation, quality of the reclaimed material was

determined on the grounds of measurements of permeability and results of screen analysis. The reclaimed material was next used again to

prepare new moulding sand. The sandmix based on high-silica sand prepared with water-glass grade 145, was subject to the following

cyclical treatment operations: mixing components, consolidation, microwave hardening, cooling, heating the mould up to 800 °C, cooling

to ambient temperature, mechanical reclamation dry and wet. It was found that the used-up and reclaimed sandmix containing water-glass

is susceptible to the applied activation process of thermally reacted film of binder and, in addition, it maintains good quality and

technological properties of high-silica base. Observations of surfaces of reclaimed high-silica grains with activated film of reacted

inorganic binder were carried-out using a scanning microscope. Thanks to properly selected reclamation parameters, the high-silica base

can be reused even five times, thus reducing demand for fresh aggregate and inorganic binder.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

Moulding sands containing sodium silicate (water-glass) belong to the group of porous mixture with low resistance to increased humidity.

Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous

reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder), moulds and foundry cores made of

high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained

steam. This paper presents results of a research on the effect of (relative) humidity on mechanical and technological properties of

microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5

were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of

water in atmospheric air was stabilized for 28 days (672 h) according to the relative humidity parameter that was ca. 40%, 60% and 80% at

constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h) and

their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and

cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam) intensifies action of the air

components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a longterm

basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the

air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores

stored in specified, controlled conditions could be still used in manufacture.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the effect of changes the parameters of heat treatment on the structure and the degree of elements segregation was

determined, in the context of corrosion resistance of ductile iron Ni-Mn-Cu, containing 7.2% Ni, 2.6% Mn and 2.4% Cu. In the condition

after casting, castings of austenitic matrix and 160HBW hardness were obtained. The achieved castings were soaked at 450, 550 and

650°C for 4, 8 and 12 hours, then cooled down at the ambient air. In most cases, the heat treatment resulted in a change in the castings

matrix, had the consequence of increasing their hardness in comparison to raw castings. Increasing the temperature and prolonging soaking

time resulted in increasing the degree of transformation of austenite, while reducing the degree of elements segregation. This led to the

formation of slightly bigger number of pitting due to corrosion, but not so deep and more evenly distributed in comparison to raw castings.

Wherein the results of corrosion tests show that heat treatment of castings did not significantly change their corrosion resistance in

comparison to raw castings, in contrast to the significant increase in mechanical properties.

Go to article

Authors and Affiliations

M. Stachowicz
A. Janus
D. Medyński
Download PDF Download RIS Download Bibtex

Abstract

In recent years, an increasing interest in sandmixes containing inorganic binders has been observed. These binders, including water-glass, are harmless for the environment, neutral for humans, and relatively cheap. In spite of numerous advantages, their wide application is restricted by poor knock-out properties and problems related to rebonding. Therefore, numerous researches aimed at eliminating the disadvantages of water-glass binders are directed, among others, to modifying the structure of hydrated sodium silicate or to applying new hardening techniques. An innovative method of rapid hardening by microwave heating, permitting the restriction of the quantity of binder used and thus improving knock-out properties, meets the expectations of present-day foundries. In this paper, available information is compiled on microwave hardening of water-glass containing sandmixes; furthermore, the costs of practical application of this technology are evaluated on the grounds of the authors' own research.

Go to article

Authors and Affiliations

A. Małachowska
M. Stachowicz
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of preliminary research on the use of silica sands with hydrated sodium silicate 1.5% wt. of binder for the performance of eco-friendly casting cores in hot-box technology. To evaluate the feasibility of high quality casting cores performed by the use of this method, the tests were made with the use of a semiautomatic core shooter using the following operating parameters: initial shooting pressure of 6 bar, shot time 4 s and 2 s, core-box temperature 200, 250 and 300 °C and core heating time 30, 60, 90 and 150 s. Matrixes of the moulding sands were two types of high-silica sand: fine and medium. Moulding sand binder was a commercial, unmodified hydrated sodium silicate having a molar module SiO2/Na2O of 2.5. In one shot of a core-shooter were made three longitudinal samples (cores) with a total volume of about 2.8 dm3. The samples thus obtained were subjected to an assessment of the effect of shooting parameters, i.e. shooting time, temperature and heating time, using the criteria: core-box fill rate, bending strength (RgU), apparent density and surface quality after hardening. The results of the trials on the use of sodium silicate moluding sands made it possible to further refine the conditions of next research into the improvement of inorganic warm-box/hot-box technology aimed at: reduction of heating temperature and shot time. It was found that the performance of the cores depends on the efficiency of the venting system, shooting time, filling level of a shooting chamber and grains of the silica matrix used.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
P. Obuchowski
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an attempt is made to explain the previously observed increased effectiveness of utilising hydrated sodium water-glass grade

137 after hardening moulding sands with selected physical methods. In the modified process of preparing sandmixes, during stirring

components, water as a wetting additive was introduced to the sand-binder system. Presented are examination results of influence of faster

microwave heating and slower traditional drying of the so-prepared moulding sands on their tensile and bending strength, calculated per

weight fraction of the binder. The measurement results were confronted with SEM observations of linking bridges and with chemical

analyses of grain surfaces of high-silica base. On the grounds of comprehensive evaluation of hardened moulding sands, positive effects

were found of the applied physical process of binder dehydration and presence of the wetting additive. It was observed that introduction of

this additive during stirring, before adding the binder, improves flowing the binder to the places where durable linking bridges are created.

It was also found that the applied methods of hardening by dehydration enable creation of very durable linking bridges, strongly connected

with the sand base, which results in damages of high-silica grain surfaces, when the bridges are destroyed.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Ł. Pałyga
Download PDF Download RIS Download Bibtex

Abstract

Presented are results of a research on the possibility of using artificial neural networks for forecasting mechanical and technological

parameters of moulding sands containing water-glass, hardened in the innovative microwave heating process. Trial predictions were

confronted with experimental results of examining sandmixes prepared on the base of high-silica sand, containing various grades of

sodium water-glass and additions of a wetting agent. It was found on the grounds of obtained values of tensile strength and permeability

that, with use of artificial neural networks, it is possible complex forecasting mechanical and technological properties of these materials

after microwave heating and the obtained data will be used in further research works on application of modern analytic methods for

designing production technology of high-quality casting cores and moulds.

Go to article

Authors and Affiliations

M. Stachowicz
Ł. Pałyga
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results on the effects of die-casting process on the strength parameters of castings of the aluminium AlSi9Cu3 alloy

belonging to the group of EN AB-46000, made on renovated high pressure die-casting machine. Specimens for quality testing were taken

from the places of the casting most loaded during the service. The aim of a research was to prove how the new die-casting process control

capabilities influence on the tensile strength of the cast material defined as a value of the breaking force of the specimens. It has been

found that it is possible to specify a set of recommended settings valves of second (II) and third (III) phase, which are responsible for

filling the metal mould on die-casting pressure machine. From the point of view of the finished cast element, it was noticed that exceeding

the prescribed values of valve settings does not bring further benefits and even causes unnecessary overload and reduce the durability of

the mold. Moreover, it was noticed that reduction of the predetermined setting of the second phase (II) valve leads to the formation of

casting defects again.

Go to article

Authors and Affiliations

M. Stachowicz
Ł. Pałyga
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an attempt was made to evaluate the effect of preliminary wetting of high-silica base during preparation of moulding sands

containing a selected grade of sodium water-glass, designed for hardening by traditional drying or by electromagnetic microwaves at 2.45

GHz. In the research, some water was dosed during stirring the sandmix before adding 1.5 wt% of the binder that was unmodified sodium

water-glass grade 137, characterised by high molar module within 3.2 to 3.4. Scope of the examinations included determining the effect of

wetting the base on mechanical parameters like compression, bending and tensile strength, as well as on technological parameters like

permeability, abrasion resistance and apparent density. The research revealed a significant positive effect of adding water to wet surfaces

of high-silica base grains on mechanical properties and quality of moulding sands hardened by physical methods, in particular by

microwave heating

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Ł. Pałyga
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of initial research on the possibility of applying microwave radiation in an innovative process of making casting

moulds from silica sand, where gypsum CaSO4∙2H2O was acting as a binding material. In the research were compared strengths and

technological properties of moulding mixture subjected to: natural bonding process at ambient temperature or natural curing with

additional microwave drying or heating with the use of microwaves immediately after samples were formed. Used in the research

moulding sands, in which dry constituents i.e. sand matrix and gypsum were mixed in the ratio: 89/11. On the basis of the results of

strength tests which were obtained by various curing methods, beneficial effect of using microwaves at 2.45 GHz for drying up was

observed after 1, 2 and 5 hours since moisture sandmix was formed. Applying the microwaves for hardening just after forming the samples

guarantees satisfactory results in the obtained mechanical parameters. In addition, it has been noted that, from a technological and

economic point of view, drying the silica sand with gypsum binder in microwave field can be an alternative to traditional molding sand

technologies.

Go to article

Authors and Affiliations

M. Stachowicz
P. Paduchowicz
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

This paper presents initial findings from research into the possibility of using gypsum binders in quartz moulding sand that could be used in the production of casting moulds and cores. For the purposes of the research two commercial types of gypsum were used as binders: building gypsum and gypsum putty. Dry components of moulding sand i.e. medium quartz sand and gypsum were mixed in proportion of 89/11 parts by weight. In order to achieve bonding properties for the binders, 5 parts by weight of water was added to the mixture of dry components. After 24 hours of adding water and mixing all the components, the moulding sand, naturally hardened, was subjected to high temperature. The moulding sand thus produced, i.e. with cheap and environmentally-friendly gypsum binders, was eventually analysed after heating (at temperatures of 300oC, 650oC and 950oC) and cooling in order to determine changes in the following parameters: LOI – loss on ignition, chemical composition and pH. Moreover, investigated were bonding bridges, before and after the moulding sand was roasted. The research results revealed differences in the structure of bonding bridges and the occurrence of automatic adhesive destruction for both types of gypsum binders. For two types of moulding sands under the investigation of the LOI exceeded 2.59wt.% (with building gypsum) or 2.84wt.% (with putty gypsum) and pH increased to ca. 12 as a result of increasing roasting temperature from 300oC to 650oC. Next, roasting at 950oC decrease value of LOI in both types of moulding sands. Moulding sand with builoding gypsum roasted at 950oC revealed a return to the value of pH parameter measured prior to annealing.

Go to article

Authors and Affiliations

M. Stachowicz
P. Paduchowicz
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

For research purposes and to demonstrate the differences between materials obtained from the carbonaceous additives to classic green moulding sands, five lustrous carbon carriers available on the market were selected. The following carbonaceous additives were tested: two coal dusts (CD1 and CD2), two hydrocarbon resins (HR1 and HR2) and amorphous graphite (AG1). The studies of products and material effects resulting from the high-temperature pyrolysis of lustrous carbon carriers were focused on determining the tendency to gas evolution, including harmful compounds from the BTEX group (benzene, toluene, ethylbenzene and xylene). Moreover, the content of lustrous carbon (LC), the content of volatile matter and loss on ignition (LOI) of the carbonaceous additives were tested. The solid products formed during high-temperature pyrolysis were used for the quantitative and qualitative evaluation of elemental composition after the exposure to temperatures of 875oC in a protective atmosphere and 950oC in an oxidizing atmosphere. The conducted studies have indicated the necessity to examine the additives to classic green moulding sands, which is of particular importance for the processing, rebonding and storage of waste sand. The studies have also revealed some differences in the quantitative and qualitative composition of elements introduced to classic moulding sands together with the carbonaceous additives that are lustrous carbon carriers. It was also considered necessary to conduct a research on lustrous carbon carriers for their proper and environmentally friendly use in the widely propagated technology of classic green sand system.
Go to article

Bibliography

[1] Said, R.M., Kamal, M.R.M., Miswan, N.H. & Ng, S.J. (2018). Optimization of Moulding Composition for Quality Improvement of Sand Casting. Journal of Advanced Manufacturing Technology (JAMT). 12(1), 301-310.
[2] Saikaew, C. & Wiengwiset, S. (2012). Optimization of molding sand composition for quality improvement of iron castings. Applied Clay Science. 67, 26-31. DOI: 10.1016/j.clay.2012.07.005.
[3] Kwaśniewska-Królikowska, D. & Holtzer, M. (2013). Selection criteria of lustrous carbon carriers in the aspect of properties of greensand system. Metalurgija. 52(1), 62-64.
[4] LaFay, V. & Crandell, G. (2009). Three Methods of Reducing Seacoal by Adding Graphite into Greensand Molds. Transactions of the American Foundrymen's Society. 117, 789.
[5] Lewandowski J.L. (2000). Lustrous carbon carrier, Przegląd Odlewnictwa, 10, 384-386. (in Polish)
[6] Lewandowski, J.L. (1998). The effect of coal dust on the toxicity of classic moulding sand. Przegląd Odlewnictwa, 10 322-325. (in Polish)
[7] Jelínek, P. & Beňo, J. (2008). Morphological forms of carbon and their utilizations at formation of iron casting surfaces. Archives of Foundry Engineering. 8(2008), 67-70.
[8] Major-Gabryś, K. (2019). Environmentally Friendly Foundry Molding and Core Sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911. DOI: 10.1007/s11665-019-03947-x.
[9] Holtzer, M. (2012). Technologies of moulding and core sands in the aspect of environmental protection. 3rd Conference Hüttenes-Albertus Poland. 19-40. (in Polish)
[10] Holtzer, M., Bobrowski, A., Grabowska, B., Eichholzb, S., & Hodorc, K. (2010). Investigation of carriers of lustrous carbon at high temperatures by infrared spectroscopy (FTIR). Archives of Foundry Engineering. 10(4), 61-68.
[11] Lewandowski, J.L. (1997). Materials for Foundry Moulds. Kraków: WN Akapit. ISBN: 83-7108-21-2. (in Polish)
[12] Holtzer, M. (2005). Can we eliminate coal dust from classic moulding sands? Przegląd Odlewnictwa. 12, 794-798. (in Polish).
[13] Naro, R.L. (2002). Formation and control of lustrous carbon surface defects in iron and steel castings. Transactions-American Foundrymens Society. 1, 815-834.
[14] Naro, R.L. (2002). An Update on the Formation and Control of Lustrous Carbon Surface Defects in Iron Castings. Ductile Iron News. 3.
[15] Campbell, J., & Naro, R.L. (2010). Lustrous Carbon on Gray Iron (10-136). Transactions of the American Foundrymen's Society, 118, 277.
[16] Jelinek, P., Buchtele, J., Fiala, J. (2004). Lustrous carbon and pyrolysis of carbonaceous additives to bentonite sands, Casting Technology, 66 World Foundry Congress, 455-467.
[17] Engelhardt, T. (2016). Low-emission additives to bentonite-bonded moulding sands. Przegląd Odlewnictwa. 66, 220-223. (in Polish)
[18] Holtzer, M., Żymankowska-Kumon, S., Kubecki, M., & Kwaśniewska-Królikowska, D. (2013). Harmfulness assessment of resins used as lustrous carbon carriers in bentonite moulding sands. Archives of Metallurgy and Materials. 58(3), 817-822. DOI: 10.2478/amm-2013-0078M.
[19] Stefański, Z. (2008). New coal dust substitutes for bentonite moulding sands used in manufacture of castings from malleable iron and aluminium alloys. Transactions of the Foundry Research Institute. 4, 5-18.
[20] Wang, Y., Huang, H., Cannon, F.S., Voigt, R.C., Komarneni, S. & Furness, J.C. (2007). Evaluation of volatile hydrocarbon emission characteristics of carbonaceous additives in green sand foundries. Environmental Science & Technology. 41(8), 2957-2963.
[21] Wang, Y., Cannon, F.S. & Li, X. (2011). Comparative analysis of hazardous air pollutant emissions of casting materials measured in analytical pyrolysis and conventional metal pouring emission tests. Environmental Science & Technology. 45(19), 8529-8535. DOI: 10.1021/es2023048.
[22] Jelinek, P., Buchtele, J., Kriz, V., Nemecek, S., Kriz, A., & Fiala, J. (2002). Morphology and Formation of Pyrolytic Carbon in Moulding Mixtures. Acta Metallurgica Slovaca. 8(4), 415-422.
[23] Michta-Stawiarska, T. (1998). Difficulties in stabilizing the properties of classic molding sands. Krzepnięcie Metali i Stopów. 35, PAN - Oddział Katowice PL. ISSN 0208-9386 (in Polish)
[24] Ji, S., Wan, L., & Fan, Z. (2001). The toxic compounds and leaching characteristics of spent foundry sands. Water, Air, and Soil Pollution. 132(3-4), 347-364, DOI: 10.1023/A:1013207000046.
[25] Orlenius, J. (2008). Factors Related to the Formation of Gas Porosity in Grey Cast Iron: Investigation of Core Gas Evolution and Gas Concentrations in Molten Iron. Research Series from Chalmers University of Technology, ISSN 1653-8891, Licentiate Theses.
[26] Bobrowski, A. & Grabowska, B. (2012). The impact of temperature on furan resin and binders structure. Metallurgy and Foundry Engineering. 38, 73-80.
[27] Poljanšek, I. & Krajnc, M. (2005). Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chimica Slovenica. 52, 238-244.
[28] Bobrowski, A., Drożyński, D., Grabowska, B., Kaczmarska, K., Kurleto-Kozioł, Ż., & Brzeziński, M. (2018). Studies on thermal decomposition of phenol binder using TG/DTG/DTA and FTIR-DRIFTS techniques in temperature range 20–500° C. China Foundry. 15(2), 145-151.
[29] Liu, L., Cao, Y. & Liu, Q. (2015). Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions. Fuel. 146, 103-110.
[30] Sonibare, O.O., Haeger, T., & Foley, S.F. (2010). Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy. 35(12), 5347-5353.
[31] Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H. & Silva, S.R.P. (1996). Raman spectroscopy on amorphous carbon films. Journal of Applied Physics. 80(1), 440-447.
Go to article

Authors and Affiliations

J. Kamińska
1
ORCID: ORCID
M. Stachowicz
2
ORCID: ORCID
M. Kubecki
3

  1. Łukasiewicz Research Network – Krakow Institute of Technology, Poland
  2. Wroclaw University of Technology, Faculty of Mechanical Engineering, Poland
  3. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the preliminary results of research on determining the possibilities of using available on the market commercial gypsum kinds as a binder for foundry moulding and core sandmixes. Construction gypsum and plaster gypsum, finishing coat and jewelry casting gypsum were tested. Elemental composition of gypsum kinds were carried out using a scanning electron microscope (SEM) with EDS/EDX probe, their crystal structure and phase composition was determined by analyzing the results of X-ray diffraction measurements (XRD) and thermogravimetric studies (TG-DTA). Evaluation of the mechanical properties of selected materials was carried out at the tensile strength test of the dog-bone samples after initial hardening of gypsum mortar at 25 °C for 5 h and drying at 110 °C for 24 hours. The impact of the properties of the used commercial gypsum kinds on the possibility of their use as a valuable binders in the manufacture of the foundry sandmixes for moulds and cores was evaluated. Construction gypsum and finishing coat have the highest tensile strength. Plaster gypsum and finishing coat have the longest setting time. In all tested types of gypsum, the initial water loss during heating occurs at a temperature of about 200 °C. The lowest valuable properties as a binder for sand moulding mixtures has jewelry casting gypsum mass.

Go to article

Authors and Affiliations

P. Paduchowicz
M. Stachowicz
ORCID: ORCID
A. Baszczuk
M. Hasiak
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of preliminary research on the application of olivine moulding sands with hydrated sodium silicate containing 1.5 % wt. of binder to perform ecological casting cores in hot-box technology using a semi-automatic core shooter. The following parameters were used in the process of core shooting: initial shot pressure of 6 bar, shot time 3 s, the temperature of the corebox: 200, 250 and 300 °C and the core curing time: 30, 60, 90, 120 and 150 s. The matrix of the moulding mixture was olivine sand, and the binder of the sandmix was commercial, unmodified hydrated sodium silicate with molar module SiO2/Na2O of 2.5. In one shot of the automatic core-shooter were formed three longitudinal specimens (cores) with a dimensions 22.2×22.2×180 mm. The samples obtained in this way were subjected to the assessment of the influence of the shooting parameters, i.e. shooting time, temperature and curing time in core-box, using the following criteria: core box fill rate, mechanical strength to bending Rg U, apparent density, compaction degree and susceptibility to friability of sand grains after hardening. The results of trials on the use of olivine moulding sands with hydrated sodium silicate (olivine SSBS) in the process of core shooting made it possible to determine the conditions for further research on the improvement of inorganic hot-box process technology aimed at: reduction of the heating temperature and the curing time. It was found that correlation between the parameters of the shooting process and the bending strength of olivine moulding sands with sodium silicate is observed.

Go to article

Authors and Affiliations

M. Stachowicz
ORCID: ORCID
Ł. Pałyga
D. Kępowicz
Download PDF Download RIS Download Bibtex

Abstract

This paper outlines issues associated with gas-shielded braze welding of CU-ETP copper with austenitic steel X5CrNi18-10 (1.4301) using a consumable electrode. The possibilities for producing joints of this type using innovative low-energy welding methods are discussed. The paper provides an overview of the results of metallographic and mechanical (static shear test, microhardness) tests for braze welded joints made on an automated station using the Cold Metal Transfer (CMT) method. Significant differences in the structure and mechanical properties are indicated, resulting from the joint configuration and the type of shielding gas (argon, helium).

Go to article

Authors and Affiliations

T. Wojdat
ORCID: ORCID
P. Kustroń
A. Margielewska
M. Stachowicz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the paper, a research on effects of baking temperature on chromite sand base of moulding sands bonded with sodium silicate is

presented. Pure chromite sand and its chromite-based moulding sand prepared with use of sodium silicate were subjected to heating within

100 to 1200 °C. After cooling-down, changes of base grains under thermal action were determined. Chromite moulding sand was prepared

with use of 0.5 wt% of domestic made, unmodified sodium silicate (water-glass) grade 145. After baking at elevated temperatures, creation

of rough layer was observed on grain surfaces, of both pure chromite sand and that used as base of a moulding sand. Changes of sand

grains were evaluated by scanning microscopy and EDS analyses. It was found that changes on grain surfaces are of laminar nature. The

observed layer is composed of iron oxide (II) that is one of main structural components of chromite sand. In order to identify changes in

internal structure of chromite sand grains, polished sections were prepared of moulding sand hardened with microwaves and baked at

elevated temperatures. Microscopic observations revealed changes in grains structure in form of characteristically crystallised acicular

particles with limited magnesium content, intersecting at various angles. EDS analysis showed that these particles are composed mostly of

chromium oxide (III) and iron oxide (II). The temperature above that the a.m. changes are observed in both chromite-based moulding sand

and in pure chromite sand. The observed phenomena were linked with hardness values and mass of this sand.

Go to article

Authors and Affiliations

M. Stachowicz
M. Kamiński
K. Granat
Ł. Pałyga
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented are results of a research on influence of electrical and physico-chemical properties of materials being parts of

multicomponent and multimaterial systems used in foundry practice on efficiency and effectiveness of microwave heating. Effectiveness

of the process was evaluated on the grounds of analysis of interaction between selected parameters of permittivity and loss factor, as well

as collective index of energy absorbed, reflected and transmitted by these materials. In the examinations used was a stand of waveguide

resonance cavity for determining electrical properties and a stand of microwave slot line for determining balance of microwave power

emitted into selected materials. The examinations have brought closer the possibility of forecasting the behaviour of multimaterial systems

like e.g. model, moulding sand or moulding box in microwave field on the grounds of various electrical and physico-chemical properties.

On the grounds of analysis of the results, possible was selecting a group of materials designed for building foundry instrumentation to be

effectively used in electromagnetic field.

Go to article

Authors and Affiliations

M. Stachowicz
B. Opyd
K. Granat
K. Markuszewska

This page uses 'cookies'. Learn more