Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Precise measurement of the sound source directivity not only requires special equipment, but also is time-consuming. Alternatively, one can reduce the number of measurement points and apply spatial interpolation to retrieve a high-resolution approximation of directivity function. This paper discusses the interpolation error for different algorithms with emphasis on the one based on spherical harmonics. The analysis is performed on raw directivity data for two loudspeaker systems. The directivity was measured using sampling schemes of different densities and point distributions (equiangular and equiareal). Then, the results were interpolated and compared with these obtained on the standard 5° regular grid. The application of the spherical harmonic approximation to sparse measurement data yields a mean error of less than 1 dB with the number of measurement points being reduced by 89%. The impact of the sparse grid type on the retrieval error is also discussed. The presented results facilitate optimal sampling grid choice for low-resolution directivity measurements.
Go to article

Authors and Affiliations

Adam Szwajcowski
1
Daniel Krause
2
Anna Snakowska
1

  1. Department of Robotics and Mechatronics, AGH University of Science and Technology, Kraków, Poland
  2. Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
Download PDF Download RIS Download Bibtex

Abstract

problem of sound radiation from an unflanged duct with mean flow of the medium taking into account existence of all allowable wave modes and, in particular, occurrence of the so-called unstable wave, which results in decay of radiation on and in vicinity of the duct axis. The flow is assumed to be uniform with the source of flow located inside the duct, which is the case frequently occurring in industrial systems. Mathematical considerations, accounting for multimodal and multifrequency excitation and diffraction at the duct outlet, are based on the model of the semi-infinite unflanged hard duct with flow. In the experimental set-up a fan, mounted inside the duct served as the source of flow and noise at the same time modelled as an array of uncorrelated sources of broadband noise, what led to the axisymmetrical shape of the sound pressure directivity characteristics. The theoretical analysis was carried out for the root mean square acoustic pressure in the far-field conditions. Experimental results are presented in the form of the measured pressure directivity characteristics obtained for uniform flow directed inwards and outwards the duct compared to this observed for the zero-flow case. The directivity was measured in one-third octave bands throughout five octaves (500 Hz - 16 kHz) which, for a duct with radius of 0.08 m, corresponds to the range 0.74-23.65 in the reduced frequency ka (Helmholtz number) domain. The results obtained are consistent with theoretical solutions presented by Munt and Savkar, according to whom the weakening of the on-axis and close-to-axis radiation should take place in the presence of medium flow. Experimental results of the present paper indicate that this effect is observed even for the Mach number as low as 0.036.

Go to article

Authors and Affiliations

Łukasz Gorazd
Jerzy Jurkiewicz
Anna Snakowska
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the problem of the effect of discretization level and certain other parameters characterizing the measurement setup on accuracy of the process of determination of the sound radiation efficiency by means of the Discrete Calculation Method (DCM) described by Hashimoto (2001). The idea behind DCM consists in virtual division of an examined sound radiating structure into rectangular elements each of which is further assumed to contribute to the total radiation effect in the same way as a rigid circular piston having the surface area equal to this of the corresponding virtual element and vibrating in an infinite rigid baffle. The advantage of the method over conventional sound radiation efficiency measurement techniques consists in the fact that instead of acoustic pressure values, source (plate) vibration velocity amplitude values are measured in a selected number of regularly distributed points. In many cases, this allows to determine the sound radiation efficiency with sufficient accuracy, especially for the low frequency regime. The key part of the paper is an analysis of the effect of discretization level (i.e. the choice of the number of points at which vibration amplitude measurements are to be taken with the use of accelerometers) on results obtained with the use of the method and their accuracy. The problem of determining an optimum level of discretization for given excitation frequency range is a very important issue as the labor intensity (time-consuming aspect) of the method is one of its main flaws. As far as the technical aspect of the method is concerned, two different geometrical configurations of the measurement setup were tested.
Go to article

Authors and Affiliations

Karolina Kolber
Anna Snakowska
Michał Kozupa
Download PDF Download RIS Download Bibtex

Abstract

It is convenient to have a device and a method of generating single cut-on modes in cylindrical hard-walled waveguides or at least in laboratory models of such systems. This allows to examine, among other things, properties of various active and/or passive elements inserted in a cylindrical duct by testing them in conditions when the incident (input) wave comprises only one cut-on mode and determining the reflection and transmission coefficients for single selected incident modes. As it has been already demonstrated by the present authors, it is possible to generate single cut-on modes in a circular duct using a small (although increasing with mode order) number of acoustic monopoles arranged properly on a duct cross-section and driven with appropriate acoustic volume amplitudes and phases. Laboratory models of such sources are proposed in this paper and results of tests verifying their directional properties are presented. The other technical issue relating to practical utilization of the proposed method is the possible error introduced by the apparatus used for scanning the acoustic field inside the duct model. It is shown that insertion of the measuring probe changes the total energy radiated into the free space only by a fraction of a decibel.
Go to article

Authors and Affiliations

Łukasz Gorazd
Anna Snakowska
Jerzy Jurkiewicz
Artur Flach

This page uses 'cookies'. Learn more