Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Background: Cardiovascular diseases are the first cause of death globally. Hypercholester-olemia is the most important factor responsible for atherosclerotic plaque formation and increasing cardiovascular risk. Reduction of LDL-C level is the most relevant goal for reduction of cardiovascular risk.
Aims: Real life adherence to guidelines concerning statin therapy in one center study population. Methods: We analyzed data collected in the Department of Internal Diseases from September 2019 to February 2020, obtained from 238 patients hospitalized in this time period. We assessed application of the new 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias in daily clinical practice and compared effectiveness of LLT according to 2016 and 2019 guidelines.
Results: Only 1 in 5 patients with dyslipideamia achieve the 2019 ESC/EAS guideline-recommended levels of LDL-C with relation to their TCVR. We noticed that 20 of patients who did not achieve proper 2019 LDL level, meet the therapy targets established in year 2016. We observed that higher patient TCVR resulted in better compliance with guidelines and ordination of proper LLT. Most patients were on monotherapy with statins.
Conclusions: It could be beneficial to start treatment with double or even triple therapy especially in group with the highest LDL-C levels.
Go to article

Bibliography

1. Cardiovascular diseases. Available from: https://www.who.int/health-topics/cardiovascular-diseases/ #tab=tab_1
2. Poland | Institute for Health Metrics and Evaluation [Internet]. Available from: http://www.healthdata.org/poland
3. Ference B.A., Ginsberg H.N., Graham I., et al.: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017; 38 (32): 2459–2472.
4. Navarese E.P., Robinson J.G., Kowalewski M., et al.: Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering a systematic review and meta-analysis. JAMA. 2018; 319 (15): 1566–1579.
5. Zdrojewski T., Solnica B., Cybulska B., et al.: Prevalence of lipid abnormalities in Poland. the NATPOL 2011 survey. Kardiol Pol. 2016; 74 (3): 213–223.
6. Pająk A., Szafraniec K., Polak M., et al.: Changes in the prevalence, treatment, and control of hypercholesterolemia and other dyslipidemias over 10 years in Poland: The WOBASZ study. Pol Arch Med Wewn. 2016; 126 (9): 642–652.
7. Mach F., Baigent C., Catapano A.L., et al.: 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Vol. 41, European Heart Journal. 2020. p. 111–188.
8. Catapano A.L., Graham I., De Backer G., et al.: 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016; 37: 2999–3058.
9. Baigent C., Blackwell L., Emberson J., et al.: Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010; 376 (9753): 1670–1681.
10. Silverman M.G., Ference B.A., Im K., et al.: Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA. 2016; 316 (12): 1289–1297.
11. Giugliano R.P., Pedersen T.R., Park J.G., et al.: Clinical efficacy and safety of achieving very low LDL- cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet. 2017 Oct 28; 390 (10106): 1962–1971.
12. Soran H., Dent R., Durrington P.: Evidence-based goals in LDL-C reduction. Clin Res Cardiol. 2017; 106 (4): 237–248.
13. Masana L., Girona J., Ibarretxe D., et al.: Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels — The zero-LDL hypothesis. J Clin Lipidol. 2018; 12 (2): 292–299. e3.
14. Katzmann J.L., Sorio-Vilela F., Dornstauder E., et al.: Non-statin lipid-lowering therapy over time in very-high-risk patients: effectiveness of fixed-dose statin / ezetimibe compared to separate pill combination on LDL-C. Clin Res Cardiol. 2020; (0123456789).
15. Guglielmi V., Bellia A., Pecchioli S., et al.: Effectiveness of adherence to lipid lowering therapy on LDL-cholesterol in patients with very high cardiovascular risk: A real-world evidence study in primary care. Atherosclerosis. 2017; 263: 36–41.
16. Kaddoura R., Orabi B., Salam A.M.: Efficacy and safety of PCSK9 monoclonal antibodies: an evidence-based review and update. J Drug Assess. 2020; 9 (1): 129–144.
17. Saborowski M., Dölle M., Manns M.P., et al.: Lipid-lowering therapy with pcsk9-inhibitors in the management of cardiovascular high-risk patients: Effectiveness, therapy adherence and safety in a real world cohort. Cardiol J. 2018; 25 (1): 32–41.
18. Novel Drug Approvals for 2015 | FDA [Internet]. Available from: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-ap-provals-2015
19. Zodda D., Giammona R., Schifilliti S.: Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs. Pharmacy. 2018; 6 (1): 10.
20. Szymański F.M., Barylski M., Cybulska B., et al.: Recommendation for the management of dyslipidemia in Poland — Third declaration of sopot. Interdisciplinary expert position statement endorsed by the Polish cardiac society working group on cardiovascular pharmacotherapy. Cardiol J. 2018; 25 (6): 655–665.
21. Koskinas K.C., Windecker S., Pedrazzini G., et al.: Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS). J Am Coll Cardiol. 2019 Nov 19; 74 (20): 2452–62.
22. Sabatine M.S., Giugliano R.P., Keech A.C., et al.: Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017; 376 (18): 1713–1722.
23. Murphy S.A., Pedersen T.R., Gaciong Z.A., et al.: Effect of the PCSK9 Inhibitor Evolocumab on Total Cardiovascular Events in Patients with Cardiovascular Disease: A Prespecified Analysis from the FOURIER Trial. JAMA Cardiol. 2019; 4 (7): 613–619.
24. Bittner V.A., Szarek M., Aylward P.E., et al.: Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J Am Coll Cardiol. 2020; 75 (2): 133–144.
25. Schwartz G.G., Steg P.G., Szarek M., et al.: Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018; 379 (22): 2097–2107.
26. Raal F.J., Kallend D., Ray K.K., et al.: Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020 Apr 16; 382 (16): 1520–1530.
27. Ferri N., Corsini A.: Clinical Pharmacology of Statins: an Update. Curr Atheroscler Rep. 2020 Jun 3; 22 (7): 26.
28. Ballantyne C.M., Banach M., Mancini G.B.J., et al.: Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis. 2018; 277: 195–203.
29. Banach M., Duell P.B., Gotto A.M., et al.: Association of Bempedoic Acid Administration with Atherogenic Lipid Levels in Phase 3 Randomized Clinical Trials of Patients with Hypercholester-olemia. JAMA Cardiol. 2020; 1–11.
30. Kam N., Perera K., Zomer E., et al.: Inclisiran as Adjunct Lipid-Lowering Therapy for Patients with Cardiovascular Disease: A Cost-Effectiveness Analysis. Pharmacoeconomics. 2020; 38 (9): 1007–1020.
Go to article

Authors and Affiliations

Patrycja Cecha
1
Anna Chromik
1
Ilona Piotrowska
1
Michał Zabojszcz
1
Magdalena Dolecka-Ślusarczyk
1
Zbigniew Siudak
1

  1. Collegium Medicum, Jan Kochanowski University, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

I n t r o d u c t i o n: Infective endocarditis (IE) is a potentially life-threatening condition. According to current ESC (European Society of Cardiology) guidelines, the use of antibiotic prophylaxis should only be reserved for specific dental procedures with interruption of consistency of the oral mucosa such as extractions and should be reserved for patients with the highest risk of developing IE. The aim of this study was to assess the knowledge of need for IE prophylaxis in defi ned clinical settings among Polish dentists.

Ma t e r i a l a n d Me t h o d s: A specially self-designed internet questionnaire was created concerning the topic of infective endocarditis prophylaxis in specifi c clinical scenarios for patients undergoing dental extractions during outpatient visits. Th e survey was made available to the dentists via internet and was active in March 2018.

R e s u l t s: There were 352 Polish dentists who completed the survey. Antibiotic prophylaxis for IE during dental extractions was used in 93% of cases with prior IE, 89% with artifi cial heart valve, 69% with biological valve, 28% with pacemaker, 54% with coronary stent, 73% with cyanotic heart defect, 58% with diabetes mellitus, 20% after prior myocardial infarction and 54% with heart valve disease. There was a significant relationship between the time of working as a physician (>15 years) and more outdated or improper IE prophylaxis (p = 0.04).

C on c l u s i o n s: The management of patients for infective endocarditis prophylaxis undergoing dental extractions is suboptimal. Antibiotic therapy is overused in some clinical scenarios and on the other hand underutilized in those recommended by the current ESC guidelines.

Go to article

Authors and Affiliations

Magdalena Homaj
Michał Szotek
Karol Sabatowski
Michał Zabojszcz
Bartłomiej W. Loster
Marcin Sadowski
Zbigniew Siudak
Download PDF Download RIS Download Bibtex

Abstract

Introduction: Interventional cardiology (IC) is a rapidly expanding fi eld of medicine. Medical studies should provide students the necessary level of knowledge about new techniques in IC. The aim of the study was to assess the medical students’ knowledge about various new areas of IC. Material and methods: Self-designed questionnaire was used to assess student’s knowledge. It contained 31 questions. Th e initial 3 questions concerned general information, the remaining ones were related to diff erent IC techniques: Transcatheter Aortic Valve Implantation (TAVI), Bioresorbable Vascular Scaff old (BVS), percutaneous mitral regurgitation repair methods, Left Atrial Appendage Occlusion (LAAO), Renal DeNervation (RDN), Balloon Aortic Valvuloplasty (BAV) and Atrial Septal Defect/Persistent Foramen Ovale (ASD/PFO). One point for each correct answer was awarded. Results: In our study participated 104 students. Mean score was 15.9 ± 5.8 points. 24% of participants were 3rd year students, 38% — 4th, 20% — 5th and 18% — 6th. Th ere was no diff erences in level of knowledge between students of diff erent years of studies (p = 0.2). Students from Students Research Groups (SRG) achieved higher score in comparison with students no attending SRG (19.3 ± 6.3 vs 13.3 ± 3.7; p <0.001) as well as students interested in cardiology comparison with other (19.6 ± 5.9 vs 13.0 ± 3.8; p <0.001). Students from SRG and interested in cardiology reached also higher results in practically every area of IC in comparison with other. Conclusions: Participants have insuffi cient, outdated and incomplete knowledge of new methods in IC. Th ere was no signifi cant diff erence in students of diff erent years of studies. Students belonging to cardiological SRG and interested in cardiology have greater knowledge in IC.
Go to article

Authors and Affiliations

Konrad Stępień
Karolina Połetek
Michał Komornik
Zbigniew Siudak
Tomasz Tokarek
Dariusz Dudek

This page uses 'cookies'. Learn more