Search results

Filters

  • Journals

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents results of heat treatment on the high chromium cast iron. The study was carrying out on samples cut from the casting

made from chromium cast iron. Those were hardened at different temperatures, then tempered and soft annealed. The heat treatment was

performed in a laboratory chamber furnace in the Department of Engineering Alloys and Composites at Faculty of Foundry Engineering

AGH. At each stage of the heat treatment the hardness was measured by Vickers and Rockwell methods, and the microscope images were

done. Additionally based on images from the optical microscope the microstructure was assessed. Based on these results, the effect of

hardening, tempering and soft annealing on the microstructure and hardness of high chromium cast iron was studied. Next the effects of

different hardening temperatures on the properties of high chromium cast iron were compared. The study led to systemize the literature

data of the parameters of heat treatment of high chromium cast iron, and optimal conditions for heat treatment was proposed for casts of

similar properties and parameters.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
D. Siekaniec
A. Szczęsny
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of Ti-addition to High Chromium Cast Iron (HCCI) on the structure and selected mechanical properties. For this

study casted two sets of cylinders with dimensions ø20 mm, ø15 mm x 250 mm, for the High Chromium Cast Iron (HCCI) and with the

4% by mass Ti-addition. Melts were performed in the induction furnace crucible capacity of 15 kg. During the heats the cup with installed

S type thermocouple was poured to record the cooling curves. The cylinders were subjected to the static bending strength test. Samples for

the test microstructure and Rockwell hardness were cut from the cylinders. The study shows that the addition of titanium had an impact on

the structure and thus the properties of High Chromium Cast Iron (HCCI). In subsequent studies, through an appropriate choice of

chemical composition and proper process control, it is planned to obtain in the structure the titanium carbides TiC and chromium carbides

with type (Cr, Fe)7C3.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
D. Siekaniec
A. Szczęsny
Download PDF Download RIS Download Bibtex

Abstract

The article presents the method to assess the diffusion coefficient D in the sub-layer of intermetallic phases formed during hot-dip

galvanizing “Armco” iron and ductile cast iron EN-GJS-500-7. Hot-dip galvanizing is one of the most popular forms of long-term

protection of Fe-C alloys against corrosion. The process for producing a protective layer of sufficient quality is closely related to diffusion

of atoms of zinc and iron. The simulation consist in performed a hot-dip galvanizing in laboratory condition above Fe-C alloys, in the

Department of Engineering of Cast Alloys and Composites. Galvanizing time ranged from 15 to 300 seconds. Then metallographic

specimens were prepared, intermetallic layers were measured and diffusion coefficient (D) were calculated. It was found that the diffusion

coefficient obtained during hot-dip galvanizing “Armco” iron and zinc is about two orders of magnitude less than the coefficient obtained

on ductile cast iron EN-GJS-500-7.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
A. Szczęsny
D. Siekaniec
Download PDF Download RIS Download Bibtex

Abstract

The present investigation focuses on the study of the influence of titanium inoculation on tribological properties of High Chromium Cast Iron. Studies of tribological properties of High Chromium Cast Iron, in particularly the wear resistance are important because of the special application of this material. High Chromium Cast Iron is widely used for parts that require high wear resistance for example the slurry pumps, brick dies, several pieces of mine drilling equipment, rock machining equipment, and similar ones. Presented research described the effects of various amounts of Fe-Ti as an inoculant for wear resistance. The results of wear resistance were collated with microstructural analysis. The melts were conducted in industrial conditions. The inoculation was carried out on the stream of liquid metal. The following amount of inoculants have been used; 0.17% Fe-Ti, 0.33% Fe-Ti and 0.66% Fe-Ti. The tests were performed on the machine type MAN. The assessment of wear resistance was made on the basis of the weight loss. The experimental results indicate that inoculation improve the wear resistance. In every sample after inoculation the wear resistance was at least 20% higher than the reference sample. The best result, thus the smallest wear loss was achieved for inoculation by 0.66% Fe-Ti. There is the correlation between the changing in microstructure and wear resistance. With greater amount of titanium the microstructure is finer. More fine carbides do not crumbling so quickly from the matrix, improving the wear resistance.

Go to article

Authors and Affiliations

D. Siekaniec
D. Kopyciński
A. Szczęsny
E. Guzik
E. Tyrała
A. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The present work, presented the study of effect of different inoculants on impact toughness in High Chromium Cast Iron. The molds were

pouring in industrial conditions and samples were tested in laboratory in Faculty of Foundry Engineering at AGH. Seven samples were tested

- one reference sample, three with different addition of Fe-Ti, and three with different addition of Al. The samples were subjected to impact

toughness on Charpy hammer and the hardness test. The presented investigations indicate that for the each inoculant there is an optimal

addition at which the sample obtained the highest value of impact toughness. For the Fe-Ti it is 0.66% and for Al is 0.17%. Of all the

examined inoculants best results were obtained at a dose of 0.66% Fe-Ti. Titanium is a well-known as a good modifier but very interesting

results gives the aluminum. Comparing the results obtained for the Fe-Ti and Al can be seen that in the case of aluminum hardness is more

stable. The hardness of all samples is around 40-45 HRC, which is not high for this type of cast iron. Therefore, in future studies it is

planned to carry out the heat treatment procedure that may improves hardness.

Go to article

Authors and Affiliations

D. Siekaniec
D. Kopyciński
E. Guzik
E. Tyrała
A. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of the possibility of adapting the Althoff-Radtke test for High Chromium Cast Iron. The Althoff-Radtke test is a

clump attempt used for steel. The Althoff-Radtke test has four different lengths of clamp which qualifies it as a test to quantitatively take

into account different kinds of shrinkage ΔL. The length of the slot of the cracked corner and the length of each staple (50 - 350 mm) are

the parameters tendency to cast cracks. Castings of white cast iron have a high tendency to hot cracking due to the large range of

solidification temperatures, unfavorable kinetics parameters of shrinkage, and especially a lack of expansion before shrinkage. Shrinkage

of high chromium white cast iron is similar to the shrinkage of cast steel, and is approximately 2%. Therefore it is important to test

susceptibility to hot cracks. Research was carried out under industrial conditions. Four melts were performed, one of the initial chemical

composition and the other three modified by different amounts of Fe-Ti, respectively, 0.25%, 0.5% and 0.75% Fe-Ti. The propensity for

hot cracking was based on the observation of the dark surface in the corner of the sample. The study shows that the Althoff-Radtke test can

be adapted to determine the tendency for hot cracking of high chromium cast iron. It should however be noted that the test results cannot be

compared with those for other alloys.

Go to article

Authors and Affiliations

D. Kopyciński
D. Siekaniec
A. Szczęsny
M. Sokolnicki
A. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The modification is a widespread method of improving the strength properties of cast iron. The impact in terms of increasing amounts of

eutectic grains has been thoroughly studied while the issue of the impact on the mechanical properties of primary austenite grains has not

been studied in depth yet. The paper presents the study of both aspects. The methodology was to conduct the melting cast iron with flake

graphite, then modifying the alloy by two sets of modifiers: the commercial modifier, and a mixture of iron powder with a commercial

inoculant. The DAAS test was carried out to identify the primary austenite grains. The degree of supercooling was determined and the

UTS test was performed as well. Additionally carried out the metallographic specimen allowing for counting grains. It can be concluded

that the introduction of the iron powder significantly improved the number of austenite primary grains which resulted in an increase

in tensile strength UTS.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
A. Szczęsny
J. Dorula
D. Siekaniec
M. Ronduda

This page uses 'cookies'. Learn more