Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents research on the use of Monte-Carlo Tree Search (MCTS) methods to create an artificial player for the popular card game “The Lord of the Rings”. The game is characterized by complicated rules, multi-stage round construction, and a high level of randomness. The described study found that the best probability of a win is received for a strategy combining expert knowledge-based agents with MCTS agents at different decision stages. It is also beneficial to replace random playouts with playouts using expert knowledge. The results of the final experiments indicate that the relative effectiveness of the developed solution grows as the difficulty of the game increases.
Go to article

Bibliography

  1.  C. Browne, “A survey of monte carlo tree search methods”, IEEE Trans. Comput. Intell. AI Games 4., 1–43 (2012).
  2.  R. Bjarnason, A. Fern, and P. Tadepalli, “Lower bounding Klondike solitaire with Monte-Carlo planning”, Nineteenth International Conference on Automated Planning and Scheduling, 2009.
  3.  M. Świechowski, T. Tajmajer, and A. Janusz, “Improving hearthstone ai by combining mcts and supervised learning algo rithms”, 2018 IEEE Conference on Computational Intelligence and Games (CIG), 2018.
  4.  J. Mańdziuk, “MCTS/UCT in Solving Real-Life Problems”, Advances in Data Analysis with Computational Intelligence Methods, 277‒292, Springer, Cham, 2018.
  5.  S. Kajita, T. Kinjo, and T. Nishi, “Autonomous molecular design by Monte-Carlo tree search and rapid evaluations using molecular dynamics simulations”, Commun. Phys. 3(1), 1‒11 (2020).
  6.  S. Haeri and L. Trajković, “Virtual network embedding via Monte Carlo tree search”, IEEE Trans. Cybern. 48(2), 510‒521 (2017).
  7.  G. Best, O.M. Cliff, T. Patten, R.R. Mettu, and R. Fitch, “Decentralised Monte Carlo tree search for active perception”, Algorithmic Foundations of Robotics XII, 864‒879, Springer, Cham, 2020.
  8.  D.A. Dhar, P. Morawiecki, and S. Wójtowicz. “Finding differential paths in arx ciphers through nested monte-carlo search”, AEU Int. J. Electron. Commun 64(2), 147‒150 (2018).
  9.  K. Guzek and P. Napieralski, “Measurement of noise in the Monte Carlo point sampling method”, Bull. Pol. Acad. Sci. Tech. Sci. 59(1), 15‒19 (2011).
  10.  D. Tefelski, T. Piotrowski, A. Polański, J. Skubalski and V. Blideanu, “Monte-Carlo aided design of neutron shielding concretes”, Bull. Pol. Acad. Sci. Tech. Sci. 61(1), 161‒171 (2013).
  11.  C.D. Ward and P.I. Cowling, “Monte Carlo search applied to card selection in Magic: The Gathering”, IEEE Symposium on Computational Intelligence and Games, 2009.
  12.  P.I. Cowling, C.D. Ward, and E.J. Powley, “Ensemble determinization in monte carlo tree search for the imperfect information card game magic: The gathering”, IEEE Trans. Comput. Intell. AI Games 4(4), 241‒257 (2012).
  13.  S. Turkay, S. Adinolf, and D. Tirthali, “Collectible Card Games as Learning Tools”, Procedia – Soc. Behav. Sci. 46, 3701‒3705 (2012), doi: 10.1016/j.sbspro.2012.06.130.
  14.  K. Bochennek, B. Wittekindt, S.-Y. Zimmermann, and T. Klingebiel, “More than mere games: a review of card and board games for medical education”, Med. Teach. 29(9), 941‒948 (2007), doi: 10.1080/01421590701749813.
  15.  J.S.B. Choe and J. Kim, “Enhancing Monte Carlo Tree Search for Playing Hearthstone”, 2019 IEEE Conference on Games (CoG), London, United Kingdom, 2019, pp. 1‒7.
  16.  K. Godlewski and B. Sawicki, “MCTS Based Agents for Multistage Single-Player Card Game”, 21st International Conference on Computational Problems of Electrical Engineering (CPEE), 2020
  17.  “Magic: The Gathering”, [online] https://magic.wizards.com/en
  18.  E.J. Powley, P.I. Cowling, and D. Whitehouse. “Information capture and reuse strategies in Monte Carlo Tree Search, with applications to games of hidden information”, Artif. Intell. 217, 92‒116 (2014).
  19.  Fantasy Flight Publishing, “Hall of Beorn”, technical documentation, 2020 [Online] Available: http://hallofbeorn.com/LotR/Scenarios/ Passage-Through-Mirkwood
  20.  S. Zhang and M. Buro, “Improving hearthstone AI by learning high-level rollout policies and bucketing chance node events”, 2017 IEEE Conference on Computational Intelligence and Games (CIG), New York, USA, 2017, pp. 309‒316.
  21.  G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van Den Herik, “Parallel monte-carlo tree search”, International Conference on Computers and Games, Springer, Berlin, Heidelberg, 2008.
  22.  A. Fern and P. Lewis, “Ensemble monte-carlo planning: An empirical study”, Twenty-First International Conference on Automated Planning and Scheduling, ICAPS 2011, Germany, 2011.
  23.  A. Santos, P. A. Santos, and F.S. Melo, “Monte Carlo tree search experiments in hearthstone,” 2017 IEEE Conference on Computational Intelligence and Games (CIG), New York, USA, 2017, pp. 272‒279.
Go to article

Authors and Affiliations

Konrad Godlewski
1
Bartosz Sawicki
1

  1. Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Bibliography

  1.  H. Das, J. K. Rout, and S.C.N. Dey, Maharana, Applied Intelligent Decision Making in Machine Learning, CRC Press, 2020.
  2.  B. Zhang, Y. Wu, J. Lu, and K.L. Du, “Evolutionary computation and its applications in neural and fuzzy systems”, Appl. Comput. Intell. Soft Comput. 2011, 938240 (2011), doi: 10.1155/2011/938240
  3.  M. Injadat, A. Moubayed, A.B. Nassif, and A. Shami, “Machine learning towards intelligent systems: applications, challenges, and opportunities”, Artif. Intell. Rev. (2021), https://doi.org/10.1007/s10462-020-09948-w.
  4.  I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT Press, 2016.
  5.  J. Heaton, “Applications of Deep Neural Networks”, arXiv: 2009.05673v2 [cs. LG] 2021, Heaton Research, Inc.
  6.  E. Kayacan and M.A. Khanesar, Fuzzy Neural Networks for Real Time Control Applications: Concepts, Modeling and Algorithms for Fast Learning, Elsevier, 2015.
  7.  A. Burkov, Machine Learning Engineering, True Positive Inc., 2020.
  8.  A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks, NIPS, 2012.
  9.  A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation, Wiley, 2009.
  10.  A. Khan, A. Sohail, U. Zahoora, and A.S. Qureshi, “A survey of the recent architectures of deep convolutional neural networks”, Artif. Intell. Rev. 53, 5455–5516 (2020), doi: 10.1007/s10462-020-09825-6.
  11.  A. Osowska-Kurczab, T. Markiewicz, M. Dziekiewicz, and M. Lorent, “Multi-feature ensemble system for renal tumour classification”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136749 (2021).
  12.  E. Kot, Z. Krawczyk, K. Siwek, P. Czwarnowski, and L. Królicki, “Deep learning-based framework for tumour detection and semantic segmentation”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136750 (2021).
  13.  Z. Krawczyk and J. Starzyński, “Segmentation of bone structures with the use of deep learning techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136751 (2021).
  14.  T. Leś, “U-Net based frames partitioning and volumetric analysis for kidney detection in tomographic images”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e137051 (2021).
  15.  M. Kołodziej, A. Majkowski, P. Tarnowski, R. Rak, and A. Rysz, “A New Method of Cardiac Sympathetic Index Estimation Using 1D-Convolutional Neural Network”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136921 (2021).
  16.  E. Majda-Zdancewicz et al., “Deep learning vs. feature engineering in the assessment of voice signals for diagnosis in Parkinson’s disease”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e137347 (2021).
  17.  F. Gil and S. Osowski, “Fusion of feature selection methods in gene recognition”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136748 (2021).
  18.  K. Godlewski and B. Sawicki, “Optimisation of MCTS player for The Lord of the Rings: the card game”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136752 (2021).
Go to article

Authors and Affiliations

Stanislaw Osowski
1 2
ORCID: ORCID
Bartosz Sawicki
1
Andrzej Cichocki
3

  1. Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
  2. Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  3. RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan

This page uses 'cookies'. Learn more