Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Aluminium based metal matrix composite (Al-MMC’s) are much popular in the field like automobile and aerospace industries, because of its ease of fabrication process and excellent mechanical properties. In this study, Al-Zn-Mg alloy composite reinforced with 3, 6 and 9 v % of zircon sand was synthesised by stir casting technique. The microstructure of the composites revealed uniform distribution of reinforced particles. Hardness, tensile strength and wear resistance of Al-Zn-Mg alloy/zircon sand composite were found to increase with increase in v % percentage of zircon sand. Scanning Electron Microscope analysis of wear tested sample surface of composites revealed no evidence of plastic deformation of matrix phase. Particle pulls out and abrasive wear was the common feature observed from all the composites.
Go to article

Authors and Affiliations

Satish Kumar T.
K. Krishna Kumar
S. Shalini
Download PDF Download RIS Download Bibtex

Abstract

The present investigation aims at fabricating a functionally graded Al-6Cr-Y2O3 composite and its microstructural and property characterization. Al-6Cr-alloys with varying percentage of Y2O3 (5-10 vol. %) have been used to fabricate FGM by powder metallurgy route. The samples were subsequently subjected to solution treatment at 610°C for 4 h followed by artificially aged at 310°C for 4 h. The microstructure, hardness and wear behavior of these FGM have been evaluated. FGM exhibited superior hardness (360 ± 5 VHN) as compared to the unprocessed composites (220 ± 5 VHN) due to the uniform dispersion of Y2O3 particles. Wear resistance of Al-6Cr-10 Y2O3 FGM were compared that of with pure Al-6Cr alloy by dry abrasive wear test. Al-6Cr-10 Y2O3 FGM composites were found to exhibit higher wear resistance with the minimum wear rate of 0.009 mm3/m compared to the Al- 6Cr alloy wear rate 0.02 mm3/m.

Go to article

Authors and Affiliations

T. Satish Kumar
K. Krishna Kumar
S. Shalini
R. Subramanian
Download PDF Download RIS Download Bibtex

Abstract

Noise is unwanted sound judged to be unpleasant, loud or disruptive to hearing. Like air pollution, noise pollution is one of the serious matters of concern in urban areas. Noise pollution occurs when noise level exceeds certain limit and has deleterious effects on human health and wellness. The major sources of noise pollution are industries, road traffic, railways, airplane traffic and social celebrations. The traffic noise is notably high in cities due to higher density of population, frequent movement of people, good transport system coupled with increasing numbers of vehicles (on road). In this work, the assessments of traffic noise in Sambalpur city is presented. Twelve important locations were chosen for the assessment. Noise contours were drawn to visualize the spreading of traffic noise into its surroundings. At the same time, the effect of noise pollution on wellness of the exposed people was studied. The study shows that the traffic noise level and its effects, are both in an alarming stage in the city.
Go to article

Authors and Affiliations

Alekh Kumar Sahu
1
Satish Kumar Nayak
2
Chitta Ranjan Mohanty
3
Prasant Kumar Pradhan
1

  1. Department of Mechanical Engineering, Veer Surendra Sai University of Technology, Burla, India
  2. Department of Civil Engineering, Veer Surendra Sai University of Technology, Burla, India
  3. Department of Civil Engineering, Parala Maharaja Engineering College, Berhampur, India
Download PDF Download RIS Download Bibtex

Abstract

This experimental study reveals the effects of CaF2, FeMn and NiO additions to the base fluxes on tensile strength and percentage elongation of the weld metal. The aim of this study is to develop suitable flux for mild steel for high tensile strength, impact strength and ductility. Bead on plate welds were made using submerged arc welding process. Mathematical model for percentage elongation and UTS of mild steel welds were made. The elements transfer to the welds have been correlated with the above mechanical performance characteristics. The effect of oxygen content on weld elongation and UTS also has been deduced. This study shows that CaF2 and NiO are the significant factors for tensile strength while FeMn is not significant for tensile strength. However, for elongation besides CaF2, the interaction of CaF2 and FeMn was also found significant. The effects of basicity index of the flux and carbon equivalent of the welds on tensile strength and percentage elongation of the welds have also been evaluated.

Go to article

Authors and Affiliations

Brijpal Singh
Zahid A. Khan
Arshad Noor Siddiquee
Sachin Maheswari
Satish Kumar Sharma

This page uses 'cookies'. Learn more