Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Nanostructured systems based on ZnO nanoparticles composite systems/polymer fibers have attracted a lot of attention in the last years because of their applications in multiple areas. Nanofibres based on polymers are used in many domains such as nanocatalysis, controlled release of medicines, environmental protection and so on. This work show the synthesis of cellulose acetate butyrate (CAB) nanofiber useful as substrates for growing ZnO nanocrystals and that ZnO is an unorganic metal oxide nanoparticle used to improve the piezoelectric properties of the polymer. The piezoelectric propertiesof ZnO-doped polymeric was investigated with atomic force microscopy and measurements were performed, in contact technique, in piezoelectric response mode (PFM).In order to analyze the structural and textural features, the obtained materials were characterized using advanced physical-chemical techniques such as X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM). The XRD patterns show the characteristic reflections of ZnO with a hexagonal type wurtzit structure and the broad peaks of the polymer. The SEM images reveal the presence of ZnO nanoparticles on top of the polymer nanofibres.In most ZnO-based nanocomposites their morphology is uncontrolled (agglomerated granules), but in ase of using cellulose acetobutyrate this becomes controlled by observing through flower-like structures SEM and AFM) The study of the functional properties of ZnO/polymer fiber composite systems showed that they have piezoelectric properties which give them the characteristics of smart material with possible sensor and actuator applications.Recent literature reports that the synthesis and characterization of ZnO-polymer nanocomposites are more flexible materials for various applications.
Go to article

Authors and Affiliations

G. Calin
1
ORCID: ORCID
L. Sachelarie
1
ORCID: ORCID
N. Olaru
2
ORCID: ORCID

  1. Apollonia University of Iasi, Faculty of Dental Medicine, 11 Pacurari Str., 700511, Iasi, Romania
  2. Institute of Macromolecular Chemistry “Petru Poni” Iasi, Aleea Grigore Ghica Voda,41A, 700487, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

Machining with tool that have cutting edge radius provides components with high fatigue strength, microhardness of a large surface layer and plastic deformation. Finite element simulations of the cutting process give a better knowledge of the chip generation phenomenon, heat generation in the machining area, stress and temperature field results. This study emphasizes the true importance of the mathematical model that underlies the shape of the tool in the pre-processing steps of finite element analysis. The argument is that its achievement and definition depend on the network difficulty. This research purpose is to perform simulations series of orthogonal machining with different radius and depth of cut. In this way, conclusions on the impact of these variations on the whole cutting process were drawn. The finite element application used is Deform 2D, the Lagrange incremental method and the Johnson-Cook material model. The temperature distribution, stress distribution, von Mises stress distribution, effects on specific tool pressure and wear, and fluctuations in the cutting resistance of the tool tip and C45 workpiece were analyzed.
Go to article

Authors and Affiliations

A.B. Pop
1
ORCID: ORCID
A.V. Sandu
2 3
ORCID: ORCID
A. Sachelarie
4
ORCID: ORCID
Mihail Aurel Țîțu
ORCID: ORCID

  1. Technical University of Cluj-Napoca, North University Center of Baia Mare, 62A, Victor Babeș Street, Baia Mare, Romania
  2. Gheorghe Asachi Technical University, Faculty of Materials Science and Engineering, Blvd. D. Mangeron 71, 700050 Iasi, Romania
  3. Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
  4. Gheorghe Asachi Technical University of Iasi, Faculty of Mechanical Engineering, D. Mangeron 41, 70050, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

Generally, the metallic implants do not exhibit any bio-integration properties in contact with bone tissues. To improve the interfacial properties of metallic implants in contact with bone, the coatings with thin biocompatible films are used. Two methods to coating titanium implants with hydroxyapatite are described. The first is a two phase method, where by cathodic polarization is deposed a monetite film followed by an alkaline treatment when the monetite is converted to hydroxyapatite. The second method is a biomimetic deposition on an alkaline activate titanium surface, using a five time more concentrated simulated body fluid (5xSBF). After deposition this samples was drying at 120℃ and was sintered at 700℃ for three hours. Optical microscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray (EDX) were used to characterize structure, morphology and compositions of the deposed films. In this study, electrochemical deposition and biomimetic deposition of hydroxyapatite are compared.
Go to article

Authors and Affiliations

M.C. Perju
1 2 3
ORCID: ORCID
C. Nejneru
1
ORCID: ORCID
P. Vizureanu
1 2 3
ORCID: ORCID
A.A. Aelenei
1
ORCID: ORCID
A.V. Sandu
1 2 3
ORCID: ORCID
L. Sachelarie
4
ORCID: ORCID
M. Nabiałek
5
ORCID: ORCID

  1. "Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Prof. D. Mangeron Street, No. 41, 700050, Iasi, Romania
  2. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech ), Perlis, Malaysia
  3. Romanian Inventors Forum, Sf. P. Movila 3, Iasi, Romania
  4. Apollonia University of Iasi, Faculty of Dentistry, PACURARI STREET, NO. 11, 700511, Iasi, Romania
  5. Częstochowa University of Technology, Department of Physics , 42-200 Częstochowa, Poland

This page uses 'cookies'. Learn more