Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In modern clinical practice in various areas of dentistry, there is a need to virtualize and determine the diagnostic parameters of the stomatognathic system (SS). The aim of this article is to provide an evaluation of correct SS structures based on a comparison of mappings in pantomography, lateral cephalometry, and volumetric tomography using bone and tooth anthropometric points. The digital measurements performed determine the applicability of the analyzed imaging techniques for clinical diagnostics by indicating discrepancies and errors in the evaluation of geometric parameters. They should verify the location of characteristic points, lines, angles, and planes in relation to spatial objects mapped on the 1:1 scale. The analyses performed confirm the appearance of bone and dental structure asymmetry in healthy patients.
Go to article

Authors and Affiliations

Wojciech Ryniewicz
1
Łukasz Bojko
2
Anna M. Ryniewicz
2

  1. Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics and Orthodontics, 4 Montelupich Street, 31-155 Krakow, Poland
  2. AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, 30 Mickiewicza Ave., 30-059 Krakow
Download PDF Download RIS Download Bibtex

Abstract

The clinical issues related to the anatomical variation of the mandibular canal have been extensively analyzed since the 19th century. Evolving dentistry techniques and advancements in the prosthetics forced to collect detailed information about anatomical variations of the mandibular canal due to its neurovascular content. Therefore, its radiographic imaging became an essential part of the oral surgery, in order to avoid complications resulted from an accidental damage of the mandibular canal.
Go to article

Authors and Affiliations

Janusz Skrzat
1
Wojciech Ryniewicz
2
Grzegorz Goncerz
1
Magdalena Kozerska
1

  1. Department of Anatomy, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Prosthodontics and Orthodontics, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

At the current stage of diagnostics and therapy, it is necessary to perform a geometric evaluation of facial skull bone structures basing upon virtually reconstructed objects or replicated objects with reverse engineering. The objective hereof is an analysis of imaging precision for cranial bone structures basing upon spiral tomography and in relation to the reference model with the use of laser scanning. Evaluated was the precision of skull reconstruction in 3D printing, and it was compared with the real object, topography model and reference model. The performed investigations allowed identifying the CT imaging accuracy for cranial bone structures the development of and 3D models as well as replicating its shape in printed models. The execution of the project permits one to determine the uncertainty of components in the following procedures: CT imaging, development of numerical models and 3D printing of objects, which allows one to determine the complex uncertainty in medical applications.

Go to article

Bibliography

[1] D. Mitsouras, P. Liacouras, A. Imanzadeh, A.A. Giannopoulos, T. Cai, K.K. Kumamaru, and V.B. Ho. Medical 3D printing for the radiologist. RadioGraphics, 35(7):1965–1988, 2015. doi: 10.1148/rg.2015140320.
[2] F. Paulsen and J. Wasche. Sobotta Atlas of Human Anatomy, General anatomy and musculoskeletal system. Vol. 1, 2013.
[3] G.B. Kim, S. Lee, H. Kim, D.H. Yang, Y.H. Kim, Y.S. Kyung, and S.U. Kwon. Threedimensional printing: basic principles and applications in medicine and radiology. Korean Journal of Radiology, 17(2):182–197, 2016. doi: 10.3348/kjr.2016.17.2.182.
[4] J.W. Choi and N. Kim. Clinical application of three-dimensional printing technology in craniofacial plastic surgery. Archives of Plastic Surgery, 42(3):267–277, 2015. doi: 10.5999/aps.2015.42.3.267.
[5] J.E. Loster, M.A. Osiewicz, M. Groch, W. Ryniewicz, and A. Wieczorek. The prevalence of TMD in Polish young adults. Journal of Prosthodontics, 26(4):284–288, 2017. doi: 10.1111/jopr.12414.
[6] A.S. Soliman, L. Burns, A. Owrangi, Y. Lee,W.Y. Song, G. Stanisz, and B.P. Chugh. A realistic phantom for validating MRI-based synthetic CT images of the human skull. Medical Physics, 44:4687–4694, 2017. doi: 10.1002/mp.12428.
[7] F. Heckel, S. Zidowitz, T. Neumuth, M. Tittmann, M. Pirlich, and M. Hofer. Influence of image quality on semi-automatic 3D reconstructions of the lateral skull base for cochlear implantation. In CURAC, 129–134, 2016.
[8] G. Budzik, T. Dziubek, and P. Turek. Basic factors affecting the quality of tomographic images. Problems of Applied Sciences, 3:77–84, 2015. (in Polish)
[9] S. Singare, C. Shenggui and N. Li. The Benefit of 3D Printing in Medical Field: Example Frontal Defect Reconstruction. Journal of Material Sciences & Engineering, 6(2):335, 2017. doi: 10.4172/2169-0022.1000335.
[10] A. Ryniewicz, K. Ostrowska, R. Knapik, W. Ryniewicz, M. Krawczyk, J. Sładek, and Ł. Bojko. Evaluation of mapping of selected geometrical parameters in computer tomography using standards. Przegląd Elektrotechniczny, 91(6):88–91, 2015. (in Polish) doi: 10.15199/48.2015.06.17.
[11] R. Kaye, T. Goldstein, D. Zeltsman, D.A. Grande, and L.P. Smith. Three dimensional printing: a review on the utility within medicine and otolaryngology. International Journal of Pediatric Otorhinolaryngology, 89:145-148, 2016. doi: 10.1016/j.ijporl.2016.08.007.
[12] G.T. Grant and P.C. Liacouras. Craniofacial Applications of 3D Printing. In: 3D Printing in Medicine: A Practical Guide for Medical Professionals. Rybicki, Frank J., Grant, Gerald T. (Eds.), Springer, Cham, Switzerland, pp. 43–50, 2017. doi: 10.1007/978-3-319-61924-8_5.
[13] T. Cai, F.J. Rybicki, A.A. Giannopoulos, K. Schultz, K.K. Kumamaru, P. Liacouras, and D. Mitsouras. The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Printing in Medicine, 1(1):2, 2015. doi: 10.1186/s41205-015-0003-3.
[14] T.Y. Hsieh, B. Cervenka, R. Dedhia, E.B. Strong, and T. Steele. Assessment of a patient- specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngology–Head & Neck Surgery, 144(7):574-579, 2018. doi: 10.1001/jamaoto.2018.0473.
[15] Y.W. Chen, C.T. Shih, C.Y. Cheng, and Y.C. Lin. The development of skull prosthesis through active contour model. Journal of Medical Systems, 41:164, 2017. doi: 10.1007/s10916-017-0808-2.
[16] J.S. Naftulin, E.Y. Kimchi, and S.S. Cash. Streamlined, inexpensive 3D printing of the brain and skull. PLoS One, 10(8):e0136198, 2015. doi: 10.1371/journal.pone.0136198.
[17] A. Ryniewicz, K. Ostrowska, Ł. Bojko, and J. Sładek. Application of non-contact measurement methods for the evaluation of mapping the shape of solids of revolution. Przegląd Eletrotechniczny, 91(5):21–24, 2015. (in Polish). doi: 10.15199/48.2015.05.06.
[18] V. Favier, N. Zemiti, O.C. Mora, G. Subsol, G. Captier, R. Lebrun. and B. Gilles. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation – A first step to create reliable customized simulators. PloS One, 12(12): e0189486, 2017. doi: 10.1371/journal.pone.0189486.
[19] M.P. Chae,W.M. Rozen, P.G. McMenamin, M.W. Findlay, R.T. Spychal, and D.J. Hunter-Smith. Emerging applications of bedside 3D printing in plastic surgery. Frontiers in Surgery, 2:25, 2015. doi: 10.3389/fsurg.2015.00025.
[20] J.A. Sładek. Coordinate Metrology. Accuracy of Systems and Measurements. Springer, 2015.
[21] ISO 15530-3:2011: Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or measurement standards.
[22] A. Marro, T. Bandukwala, and W. Mak. Three-dimensional printing and medical imaging: a review of the methods and applications. Current Problems in Diagnostic Radiology, 45(1): 2–9, 2016. doi: 10.1067/j.cpradiol.2015.07.009.
[23] A. Ryniewicz. Evaluation of the accuracy of the surface shape mapping of elements of biobearings in in vivo and in vitro tests. Scientific Works of the Warsaw University of Technology. Mechanics, 248:3–169, 2013. (in Polish).
[24] B.M. Mendez, M.V. Chiodo, and P.A. Patel. Customized “In-Office” three-dimensional printing for virtual surgical planning in craniofacial surgery. The Journal of Craniofacial Surgery, 26(5):1584–1586, 2015. doi: 10.1097/SCS.0000000000001768.
[25] J.J. de Lima Moreno, G.S. Liedke, R. Soler, H.E.D. da Silveira, and H.L.D. da Silveira. Imaging factors impacting on accuracy and radiation dose in 3D printing. Journal of Maxillofacial and Oral Surgery, 17(4):582–587, 2018. doi: 10.1007/s12663-018-1098-z.
[26] S.W. Park, J.W. Choi, K.S. Koh and T.S. Oh. Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. Journal of Oral and Maxillofacial Surgery, 73(8):1540–1553, 2015. doi: 10.1016/j.joms.2015.03.025.
[27] K.M. Day, P.M. Phillips, and L.A. Sargent. Correction of a posttraumatic orbital deformity using three-dimensional modeling. Virtual surgical planning with computer-assisted design, and three-dimensional printing of custom implants. Craniomaxillofacial Trauma and Reconstruction, 11(01):078–082, 2018. doi: 10.1055/s-0037-1601432.
[28] Y.C. Lin, C.Y. Cheng, Y.W. Cheng, and C.T. Shih. Skull repair using active contour models. Procedia Manufacturing, 11: 2164–2169, 2017. doi: 10.1016/j.promfg.2017.07.362.
[29] J.N. Winer, F.J. Verstraete, D.D. Cissell, S. Lucero, K.A. Athanasiou and B. Arzi. The application of 3-dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats. Veterinary Surgery, 46(7):942–951, 2017. doi: 10.1111/vsu.12683.
[30] J.Y. Lim, N. Kim, J.C. Park, S.K. Yoo, D.A. Shin, and K.W. Shim. Exploring for the optimal structural design for the 3D-printing technology for cranial reconstruction: a biomechanical and histological study comparison of solid vs. porous structure. Child’s Nervous System, 33(9):1553–1562, 2017. doi: 10.1007/s00381-017-3486-y.
[31] W. Shui, M. Zhou, S. Chen, Z. Pan, Q. Deng, Y. Yao, H. Pan, T. He, and X. Wang. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques. International Journal of Computer Assisted Radiology and Surgery, 12(1):13–23, 2017. doi: 10.1007/s11548-016-1461-9.
Go to article

Authors and Affiliations

Andrzej Ryniewicz
1 2
Wojciech Ryniewicz
3
Stanisław Wyrąbek
1
Łukasz Bojko
4

  1. Cracow University of Technology, Faculty of Mechanical Engineering, Poland.
  2. State University of Applied Science, Nowy Sącz, Poland.
  3. Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics, Cracow, Poland.
  4. AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Cracow, Poland.
Download PDF Download RIS Download Bibtex

Abstract

The functionality of a prosthesis is determined by clinical procedures, the manufacturing technology applied, the material used and its strength parameters. The aim of the paper is to evaluate the static strength and fatigue strength of acrylic construction materials directly after the process of polymerisation and for aged materials. It has been confirmed that the deformation speed of the tested materials has an evident impact on their mechanical characteristics. With greater deformation speed, a consistent increase in the material elasticity was observed in static compression tests, which was accompanied by a reduction in engineering stresses at the final stage of deformation. The greatest fatigue strength was observed for Vertex. It was by about 33% greater than the strength of Villacryl – the material that has the lowest fatigue properties. The resistance of acrylic polymers to cyclic loading applied with the frequency of 1 Hz may become an indication for the selection of the material to be used in the clinical procedures in which a patient is provided with full dentures.

Go to article

Authors and Affiliations

Anna Maria Ryniewicz
Tomasz Machniewicz
Wojciech Ryniewicz
Łukasz Bojko
Download PDF Download RIS Download Bibtex

Abstract

Background: Studies on the effect of root canal rinsing protocols on fiber post bonding to dentin are inconclusive. This study reports investigation of this topic. Objectives: to determine effects of irrigation protocol by means of a push-out test on the strength of adhesion between the post and dentin in an in vitro study.
Materials and Method: Thirty human single-rooted teeth were prepared using hand instruments and the step-back technique, filled with gutta-percha, sealed with AH Plus (Dentsply), and divided into three groups: A: rinsed with NaCl; B: rinsed with 2% chlorhexidine (CHX); C: not rinsed before cementa-tion of posts. The fiber posts were set using RelyX and Built-it. The tooth roots were sliced and the push- out test was performed. The area of contact between the post and dentin was calculated and the destroying force was established. The results were statistically analyzed.
Results: The mean adhesive strength was 10.69 MPa in group A, 16.33 MPa in group B, and 16.72 MPa in C. The adhesive strength in group B and C was statistically significantly higher than in group A (p = 0.0016, ANOVA).
Conclusion: Rinsing root canals with CHX seems to be the most effective method prior to setting a fiber post.
Go to article

Bibliography

1. Asmussen E., Peutzfeldt A., Heitmann T.: Stiffness, elastic limit, and strength of newer types of endodontic posts. Journal of Dentistry. 1999; 27: 275–278.
2. Bateman G., Ricketts D.N., Saunders W.P.: Fibre-based post systems: a review. Br Dent J. 2003; 195: 43–48.
3. Schwartz R.S., Robbins J.W.: Post placement and restoration of endodontically treated teeth: a literature review. J Endod. 2004; 30: 289–301.
4. Skupien A., Sarkis-Onofre R., Cenci S., Morales R., Pereira-Cenci T.: A sys.ematic review of factors associated with the retention of glass fiber posts. Braz Oral Res. 2015; 29: 1–8.
5. Ryniewicz W., Ryniewicz A.M., Bojko Ł.: The effect of a prosthetic crown’s design on the accuracy of mapping an abutment teeth’s shape. Meas. 2016; 91: 620–627.
6. Bitter K., Aschendorff L., Neumann K., Blunck U., Sterzenbach G.: Do chlorhexidine and ethanol improve bond strength and durability of adhesion of fiber posts inside the root canal? Clin Oral Investig. 2014; 18: 927–934.
7. Haragushiku G.A., Back E.D., Tomazinho P.H., Baratto Filho F., Furuse A.Y.: Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals. J Appl Oral Sci. 2015; 23: 436–441.
8. Stape T.H.S., de Souza Menezes M., Aguiar F.H.B., Quagliatto P.S., Soares C.J., Martins L.R.M.: Long- term effect of chlorhexidine on the dentin microtensile bond strength of conventional and self- adhesive resin cements: A two-year in vitro study. Int J Adhes Adhes. 2014; 50: 228–234.
9. Toman M., Toksavul S., Tamac E., Sarikanat M., Karagozoglu I.: Effect of chlorhexidine on bond strength between glass-fiber post and root canal dentine after six month of water storage. Eur J Prosthodont Restor Dent. 2014; 22: 29–34.
10. Cecchin D., Farina A.P., Souza M.A., Da Cunha Pereira C.: Effect of root-canal sealer on the bond strength of fiberglass post to root dentin. Acta Odontol Scand. 2011; 69: 95–100.
11. Cecchin D., de Almeida J.F., Gomes B.P., Zaia A.A., Ferraz C.C.: Influence of chlorhexidine and ethanol on the bond strength and durability of the adhesion of the fiber posts to root dentin using a total etching adhesive system. J Endod. 2011; 37: 1310–1315.
12. Cecchin D., Farina A.P., Giacomin M., Vidal C. de M., Carlini-Junior B., Ferraz C.C.: Influence of chlorhexidine application time on the bond strength between fiber posts and dentin. J Endod. 2014; 40: 2045–2048.
13. Cecchin D., Giacomin M., Farina A.P., Bhering C.L., Mesquita M.F., Ferraz C.C.: Effect of chlorhexidine and ethanol on push-out bond strength of fiber posts under cyclic loading. J Adhes Dent. 2014; 16: 87–92.
14. Ekambaram M., Yiu C.K., Matinlinna J.P., Chang J.W., Tay F.R., King N.M.: Effect of chlorhexidine and ethanol-wet bonding with a hydrophobic adhesive to intraradicular dentine. J Dent. 2014; 42: 872–882.
15. Gomes Franca F.M., Vaneli R.C., Conti C. de M., Basting R.T., do Amaral F.L., Turssi C.P.: Effect of Chlorhexidine and Ethanol Application on Long-term Push-out Bond Strength of Fiber Posts to Dentin. J Contemp Dent Pract. 2015; 16: 547–553.
16. Leitune V.C., Collares F.M., Werner Samuel S.M.: Influence of chlorhexidine application at longitudinal push-out bond strength of fiber posts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 110: e77–81.
17. Lindblad R.M., Lassila L.V., Salo V., Vallittu P.K., Tjaderhane L.: Effect of chlorhexidine on initial adhesion of fiber-reinforced post to root canal. J Dent. 2010; 38: 796–801.
18. Kang H.-J., Moon H.-J., Shin D.-H.: Effect of different chlorhexidine application times on microtensile bond strength to dentin in Class I cavities. Restor Dent Endod. 2012; 37: 9–15.
19. Goracci C., Grandini S., Bossu M., Bertelli E., Ferrari M.: Laboratory assessment of the retentive potential of adhesive posts: a review. J Dent. 2007; 35: 827–835.
20. Baldea B., Furtos G., Antal M., Nagy K., Popescu D., Nica L.: Push-out bond strength and SEM analysis of two self-adhesive resin cements: An in vitro study. J Dental Sci. 2013; 8: 296–305.
21. Bitter K., Hambarayan A., Neumann K., Blunck U., Sterzenbach G.: Various irrigation protocols for final rinse to improve bond strengths of fiber posts inside the root canal. Eur J Oral Sci. 2013; 121: 349–354.
22. Casselli D.S., Borges M.G., Menezes M.S., Faria-e-Silva A.L.: Effect of cementation protocol on push- out bond strength of fiber posts to root canal. Appl Adhes Sci. 2014; 2: 15.
23. Cecchin D., de Almeida J.F., Gomes B.P., Zaia A.A., Ferraz C.C.: Effect of chlorhexidine and ethanol on the durability of the adhesion of the fiber post relined with resin composite to the root canal. J Endod 2011; 37: 678–683.
24. Kim Y.H., Shin D.H.: Effect of chlorhexidine application on the bond strength of resin core to axial dentin in endodontic cavity. Restor Dent Endod. 2012; 37: 207–214.
25. Lima J.F., Lima A.F., Humel M.M., Paulillo L.A., Marchi G.M., Ferraz C.C.: Influence of irrigation protocols on the bond strength of fiber posts cemented with a self-adhesive luting agent 24 hours after endodontic treatment. Gen Dent. 2015; 63: 22–26.
26. Wang L., Pinto T.A., Silva L.M., et al.: Effect of 2% chlorhexidine digluconate on bond strength of a glass-fibre post to root dentine. Int Endod J. 2013; 46: 847–854.
27. de Araujo D.F., Chaves L.P., Bim O. Jr., et al.: Influence of 2% chlorhexidine digluconate on bond strength of a glass-fibre post luted with resin or glass-ionomer based cement. J Dent. 2014; 42: 735– 741.
28. Sahinkesen G., Erdemir U., Oktay E.A., Sancakli H.S.: The effect of post surface silanization and luting agents on the push-out bond strengths of adhesively inserted fiber reinforced posts. Int J Adhes Adhes 2011; 31: 265–270.
29. Lindblad R.M., Lassila L.V., Salo V., Vallittu P.K., Tjaderhane L.: One year effect of chlorhexidine on bonding of fibre-reinforced composite root canal post to dentine. J Dent. 2012; 40: 718–722.


Go to article

Authors and Affiliations

Bartosz Ciapała
1
Krzysztof Górowski
2
Wojciech I. Ryniewicz
2
Andrzej Gala
2
Jolanta E. Loster
2

  1. Department of Integrated Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Dental Prosthetics and Orthodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland

This page uses 'cookies'. Learn more