Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The presented work focuses on the experimental investigation of a vibroacoustic metamaterial integrated into a spinning circular saw blade. Vibroacoustic metamaterials are a novel technology for broadband vibration reduction. Built from an array of local resonators, a broadband vibration reduction characteristic in the frequency domain (a so-called stop band) can be achieved. A design of a vibroacoustic metamaterial suitable for integration into a circular saw blade is developed and a numerical stop band prediction is performed. The resonators of the vibroacoustic metamaterial are integrated into the saw blade with a water jet cutting machine to create slots, forming flaps that are free to oscillate. The structural dynamic behavior of the saw blade with integrated vibroacoustic metamaterial is experimentally investigated on a rotor dynamic test bench and compared to that of a standard saw blade. The saw blades are excited by an automatic impulse hammer and the resulting out-of-plane vibrations are measured with a laser vibrometer at two different radii. Measurements are conducted at different rotational speeds up to 1800 rpm. Up to rotational speeds of 1000 rpm a stop band characteristic in the frequency range of 1900–2500 Hz is observed.
Go to article

Authors and Affiliations

Sebastian Rieß
1
ORCID: ORCID
William Kaal
1
ORCID: ORCID
Sven Herold
1
ORCID: ORCID

  1. Fraunhofer Institute for Structural Durability and System Reliability LBF, 64298, Darmstadt, Germany

This page uses 'cookies'. Learn more