Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to compare three different methods of analysis of results of lightning impulse breakdown voltage measurements of solid materials such as insulating pressboard. These three methods are the series method, the step method and the up-and-down method which are applied to withstand voltage estimation commonly in high voltage engineering. To obtain the data needed for the analysis a series of experimental studies was carried out. It included studies of mineral oil and natural ester impregnating 1 mm of thick cellulose-based pressboard. In order to show the distribution of breakdown voltage the Weibull distribution was additionally applied in data analysis. The results were also assessed from the viewpoint of dielectric liquid used for impregnation. The studies carried out showed that series and step methods give comparable results opposite to the up-and-down method. The latest overstates the results for mineral oil impregnated pressboard and understates for natural ester impregnated pressboard when juxtaposing them with the rest of the methods applied. In addition, there is lack of possibility to assess the withstand voltage for the up-and-down method directly from the vector of random variable. It is possible only as a result of a specially developed equation which always arouses doubt. From the methods applied it seems that the step method can be a great substitution for the series method as intuitive, fast in application and limiting the number of samples in solid insulation material testing.
Go to article

Bibliography

[1] Liu, Q.,Wang, Z. D., & Perrot, F. (2009). Impulse breakdown voltages of ester-based transformer oils determined by using different test methods. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 608–612. https://doi.org/10.1109/CEIDP.2009.5377741
[2] Rozga, P. (2016). Streamer propagation in a non-uniform electric field under lightning impulse in short gaps insulated with natural ester and mineral oil. Bulletin of the Polish Academy of Sciences: Technical Science, 64(1), 171–179. https://doi.org/10.1515/bpasts-2016-0019
[3] Rozga, P. (2016). Using the three-parameter Weibull distribution in assessment of threshold strength of pressboard impregnated by different liquid dielectrics. IET Science, Measurement & Technology, 10(6), 665–670. https://doi.org/10.1049/iet-smt.2016.0061
[4] Aniserowicz, K. (2019). Analytical calculations of surges caused by direct lightning strike to underground intrusion detection system. Bulletin of the Polish Academy of Sciences: Technical Science, 67(2), 263–269. https://doi.org/10.24425/bpas.2019.128118
[5] Mosinski, F. (1995). Metody statystyczne w technice wysokich napięć. Wydawnictwo Politechniki Łódzkiej. (in Polish)
[6] Vibholm, S., & Thyregod, P. (1988). A study of the up-and-down method for non-normal distribution functions. IEEE Transactions on Electrical Insulation, 23(3), 357–364. https://doi.org/10.1109/14.2375
[7] Rozga, P. (2019). Lightning strength of gas, liquid and solid insulation – experience formthe laboratory tests. The International Conference on Power Transformers “Transformer’19”, 199–212.
[8] Khaled, U., & Beroual, A. (2020). Lightning impulse breakdown voltage of synthetic and natural ester liquids-based Fe3O4, Al2O3 and SiO2 nanofluids. Alexandria Engineering Journal, 59(5), 3709–3713. https://doi.org/10.1016/j.aej.2020.06.025
[9] Zhang, Q., You, H., Guo, C., Qin, Y., Ma, J., &Wen, T. (2016) Experimental research of dispersion of SF6 discharge breakdown voltage under lighting impulse. High Voltage Engineering, 42(11), 3415– 3420.
[10] Zhang, Y., Xie, S., Jiang, X., Ye, L., Zhang, Ch., Sun, P., Mu, Z., & Sima, W. (2019). Study on consistency of failure probability characteristics of oil-paper insulation under different impulse voltages. Proceedings of the 21st International Symposium on High Voltage Engineering, 1192–1206. https://doi.org/10.1007/978-3-030-31676-1_111
[11] Cousineau, D. (2009). Fitting the three-parameter Weibull distribution: review and evaluation of existing and new methods. IEEE Transactions on Dielectrics and Electrical Insulation, 16(1), 281– 288. https://doi.org/10.1109/TDEI.2009.4784578
[12] European Standards. (2014). Electric strength of insulating materials – Test methods – Part 3: Additional requirements for 1,2/50 μs impulse tests (IEC 60243-3: 2014).
[13] Witos, F., Opilski, Z., Szerszen, G., & Setkiewicz, M. (2019). The 8AE-PD computer measurement system for registration and analysis of acoustic emission signals generated by partial discharges in oil power transformers. Metrology and Measurement Systems, 26(2), 403–418. https://doi.org/10.24425/mms.2019.128355
[14] Shen, Z., Wang, F., Wang, Z., Li, J. (2021). A critical review of plant-based insulating fluids for transformer: 30 years of development. Renewable and Sustainable Energy Reviews, 41, 110783. https://doi.org/10.1016/j.rser.2021.110783
[15] Liu, Q., & Wang, Z. D. (2013) Breakdown and withstand strengths of ester transformer liquids in a quasi-uniform field under impulse voltages. IEEE Transactions on Dielectrics and Electrical Insulation, 20(2), 571–579. https://doi.org/10.1109/TDEI.2013.6508761
[16] Mohan Rao, U., Fofana, I., Beroual, A., Rozga, P., Pompili, M., Calcara, L., & Rapp, K. J. (2020). A review on pre-breakdown phenomena in ester fluids: Prepared by the international study group of IEEE DEIS liquid dielectrics technical committee. IEEE Transactions on Dielectrics and Electrical Insulation, 27(5), 1546–1560. https://doi.org/10.1109/TDEI.2020.008765
[17] Dixon,W. J. (1965). The Up-and-Down method for small samples. Journal of the American Statistical Association, 60, 967–978.
[18] Malska,W., & Mazur, D. (2017). Analiza wpływu prędkosci wiatru na generację mocy na przykładzie farmy wiatrowej. Przegląd Elektrotechniczny, 93(4), 54–57 https://doi.org/10.15199/48.2017.04.14
[19] Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data (2nd ed.). J. Wiley. https://doi.org/10.1002/9781118032985
[20] De Haan, L., & Ferreira, A. (2007). Extreme value theory: an introduction. Springer Science & Business Media. https://doi.org/10.1007/0-387-34471-3
[21] Chmura, L., Morshuis, P. H. F., Smit, J. J., & Janssen, A. (2015). Life-data analysis for condition assessment of high-voltage assets. IEEE Electrical Insulation Magazine, 31(5), 20–25. https://doi.org/10.1109/MEI.2015.7214443
[22] Cargill. (2018). https://www.cargill.com/bioindustrial/fr3-fluid/fr3-fluid-technical-details [23] Nynas. (20210). Nytro Taurus (IEC 60296) Ed. 5 – Standard Grade. https://www.nynas.com/en/product-areas/transformer-oils/oils/nytro-taurus/
[24] Rozga P., Beroual A., Przybylek P., Jaroszewski M., & Strzelecki K. (2020). A review on synthetic ester liquids for transformer applications. Energies, 13(23), 6429. https://doi.org/10.3390/en13236429
[25] European Standards. (2011). Power transformers – Part 1: General (IEC 60076-1:2011)
Go to article

Authors and Affiliations

Artur Klarecki
1 2
Paweł Rózga
1
Filip Stuchała
1

  1. Lodz University of Technology, Institute of Electrical Power Engineering, Stefanowskiego 18/22, 90-924 Lodz, Poland
  2. Lodz University of Technology, Interdisciplinary Doctoral School, Zeromskiego 116, 90-924 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article is focused on considerations based on experimental studies concerning changes of selected parameters of identical compact fluorescent lamps (CFLs) intended for use in buildings during their operation. The studies constituted a long-term experiment whose goal was an evaluation of selected operating parameters of the CFLs in terms of meeting the requirements set out in the specified regulations as well as the issue of marking the lamps with the energy efficiency class. The measurements were performed with the authors’ experimental setup consisting of original equipment designed and made especially for the purpose of the measurements. The studies covered registration of the luminous flux as well as selected electrical parameters such as active power, current and the power factor during the so-called “start-up time” and operation time equal to 100 h, 500 h, 1000 h, 2000 h, etc. with a 1000 h step. The studies were finished with the moment of natural burnout of the CFLs tested. The results showed that the biggest drawback of CFLs is lack of preservation of the required time to reach 60% of the stabilized luminous flux just after short time of lamp operation. Similarly when assessing the conformity of the parameters declared by the manufacturer that have been verified, it can be stated that they are true only at the initial stage of lamp operation.

Go to article

Authors and Affiliations

Przemysław Tabaka
ORCID: ORCID
Paweł Rózga
Download PDF Download RIS Download Bibtex

Abstract

Light sources and luminaires made in the LED technology are nowadays widely used in industry and at home. The use of these devices affects the operation of the power grid and energy efficiency. To estimate this impact, it is important to know the electrical parameters of light sources and luminaires, especially with the possibility of dimming. The article presents the results of measurements of electrical parameters as well as luminous flux of dimmable LED luminaires as a function of dimming and RMS supply voltage. On the basis of the performed measurements, a model of LED luminaire was developed for prediction of electrical parameters at set dimming values and RMS values of the supply voltage. The developed model of LED luminaire has 2 inputs and 26 outputs. This model is made based on 26 single models of electrical parameters, whose input signals are supply and control voltages. The linear regression method was used to develop the models. An example of the application of the developed model for the prediction of electrical parameters simulating the operation of an LED luminaire in an environment most similar to real working conditions is also presented.
Go to article

Authors and Affiliations

Roman Sikora
1
ORCID: ORCID
Przemysław Markiewicz
1
ORCID: ORCID
Paweł Rózga
1

  1. Institute of Electrical Power Engineering, Łódz University of Technology, 90-924 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Outdoor lighting is an important element in creating an evening and nocturnal image of urban spaces. Properly designed and constructed lighting installations provide residents with comfort and security. One way to improve the energy efficiency of road lighting installation is to replace the electromagnetic control gear (ECG) with electronic ballasts (EB). The main purpose of this article is to provide an in-depth comparative analysis of the energy efficiency and performance of HPS lamps with ECG and EB. It will compare their performance under sinusoidal and nonsinusoidal voltage supply conditions for the four most commonly used HPS lamps of 70 W, 100 W, 150 W, and 250 W. The number of luminaires supplied from one circuit was determined based on the value of permissible active power losses. With the use of the DIALux program, projects of road lighting installation were developed. On this basis, energy performance indicators, electricity consumption, electricity costs, and CO 2 emissions were calculated for one-phase and three-phase installations. The obtained results indicate that an HPS lamp with EB is better than an HPS lamp with ECG in terms of energy quality, energy savings, and environmental impact. The results of this analysis are expected to assist in the choice of HPS lighting technology.
Go to article

Bibliography

  1.  A. Mayeur, R. Bremond, and J.M.Ch. Bastien, “The effect of the driving activity on target detection as a function of the visibility level: implications for road lighting”, Transp. Res. 13(2), 115‒128 (2010).
  2.  Ch. Boomsma and L. Steg, “The effect of information and values on acceptability of reduced street lighting“, J. Environ. Psychol. 39, 22‒31 (2014).
  3.  A. Pena-Garcia, A. Hurtado, and M.C. Aguilar-Luzon, “Impact of public lighting on pedestrians’ perception of safety and well-being”, Saf. Sci. 78, 142‒148 (2015).
  4.  J.D. Bullough, E.T. Donnell, and M.S. Rea, “To illuminate or not to illuminate: roadway lighting as it affects traffic safety at intersections”, Accid. Anal. Prev. 53, 65‒77 (2013).
  5.  A. Jafari-Anarkooli and M. Hadji Hosseinlou, “Analysis of the injury severity of crashes by considering different lighting conditions on two-lane rural roads”, J. Saf. Res. 56, 57‒65 (2016).
  6.  M. Jackett and W. Frith, “Quantifying the impact of road lighting on road safety-a New Zealand study”, IATSS Res. 36, 139‒145 (2013).
  7.  K. Kircher and Ch. Ahlstrom, “The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers”, Accid. Anal. Prev. 47, 153‒161 (2012).
  8.  M. Kostic and L. Djokic, “Recommendation for energy efficient and visually acceptable street lighting”, Energy 34, 1565–1572 (2009).
  9.  D. Campisi, S. Gitto, and D. Morea, “Economic feasibility of energy improvements in street lighting systems in Rome”, J. Clean. Prod. 175, 190‒198 (2018).
  10.  S. Yoomak and A. Ngaopitakkul, “Optimisation of quality and energy efficiency of LED luminaires in roadway lighting systems on different road surfaces”, Sustain. Cities Soc. 38, 333‒347 (2018).
  11.  F. Lecce, G. Salvadoni, and M. Rocca, “Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy”, Energy 138, 616‒628 (2017).
  12.  M. Beccali, M. Bonomolo, F. Leccese, D. Lista,, and G. Salvadoni, “On the impact of safety requirements , energy prices and investment costs in street lighting refurbishment design”, Energy 165, 739–759 (2018).
  13.  P. Pracki, A. Wiśniewski, D. Czyżewski, R. Krupiński, K. Skarżyński, M. Wesołowski, and A. Czaplicki, “Strategies influencing energy efficiency of lighting solutions”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 711‒719 (2020).
  14.  P.R. Boyce, S. Fotios, and M. Richards, “Road lighting and energy savings”, Lighting Res. Technol. 41, 245‒260 (2009).
  15.  C.C.M. Kyba, A. Hänel, and F. Hölker, “Redefining efficiency for outdoor lighting”, Energy Environ. Sci. 7, 1806‒1814 (2014).
  16.  M. Beccali, M. Bonomolo, G. Ciulla, A. Galatioto, and V. Lo Brano, “Improvement of energy efficiency and quality of street light-ing in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)”, Energy 92(3), 394‒408 (2015).
  17.  A. Wiśniewski, “Calculations of energy savings using lighting control systems ”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 809‒817 (2020).
  18.  M. IndraalIrsyad and N. Rabindra, “A survey based approach to estimating the benefits of energy efficiency improvements in street lighting systems in Indonesia”, Renew. Sust. Energ. Rev. 58, 1569–1577 (2016).
  19.  S. Pizzuti, M. Annunziato, and F. Moretti, “Smart street lighting management”, Energy Effic. 6, 607–616 (2013).
  20.  D. Radulovic, S. Skok, and V. Kirincic, “Energy Effic. public lighting management in the cities”, Energy 36, 1908–1915 (2011).
  21.  A. Djuretic and M. Kostic, “Comparison of electronic and conventional ballasts used in roadway lighting”, Light. Res. Technol. 46, 407–420 (2014).
  22.  S. Yoomak, Ch. Jettansen, and S. Ngaopitakkul Bunjongjit, “Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system”, Energy Build. 159, 542‒557 (2018).
  23.  M.H. Omar, H. Abdul Rahman, M.S. Majid, M.Y. Hassan, and N. Rosmin, “The reduction of total harmonic distortion and electromagnetic interference in high pressure sodium street lighting using single stage electronic ballast”, IEEE International Power Engineering and Optimization Conference (PEOCO) 2012, pp. 230‒235.
  24.  A.A. Mansour and O.A. Arafa, “Comparative study of 250 W high pressure sodium lamp operating from both conventional and electronic ballast”, J. Electr. Syst. Inf. Technol. 1, 234‒254 (2014).
  25.  W. Nsibi, M. Nehdi, A.J. Chammam, A. Sellami, and G. Zissis, “Dimmable electronic ballast for HPS lamp operating in LF”, 7th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 2016, pp. 1‒4.
  26.  M.N. Nehdi, W. Nsibi, A. Chammam, A. Sellami, and G. Zissis, “Frequency dimmable electronic ballast for a 250W HPS lamp”, 7th International Renewable Energy Congress (IREC), Hammamet, 2016, pp. 1‒3.
  27.  R. Sikora and P. Markiewicz, “Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast”, Energies, 13(11), 2909 (2020), doi: 10.3390/en13112909.
  28.  F.B. dos Reis, J. Cesar Marques de Lima, and F.S. dos Reis, “Development of a flexible public lighting system”, 39th Annual Conference of the Industrial Electronics Society (IECON), 2013, pp. 6046‒6051.
  29.  A. Gil-De-Castro, A. Moreno-Munoz, and J.J.G. De La Rosa, “Comparative study of electromagnetic and electronic ballasts – an assessment on harmonic emission”, Electr. Rev.-Prz. Elektrotechniczny 88(2), 288‒294 (2012).
  30.  H. Shu-Hung Chung, N.M. Ho, W. Yan, P. Wai Tam, and S.Y. Hui, “Comparison of Dimmable Electromagnetic and Electronic Ballast Systems—An Assessmenton Energy Effic. and Lifetime”, IEEE Trans. Ind. Electron. 54, 3145‒3154 (2007).
  31.  M.H. Omar, H.A. Rahman, M.S. Majid, N. Rosmin, M.Y. Hassan, and W.Z. Wan Omar, “Design and simulation of electronic ballast performance for high pressure sodium street lighting”, Light. Res. Technol. 45, 729–739 (2013).
  32.  S. Hossein-Hosseini, M. Sabahi, and A. Yazdanpanah-Goharrizi, “An improved topology of electronic ballast with wide dimming range,PFC and low switching losses using PWM-controlled soft-switching inwerter”, Electr. Power Syst. Res. 78, 975–984 (2008).
  33.  A. Burgio and D. Menniti, “A novel technique for energy savings by dimming high pressure sodium lamps mounted with magnetic ballasts using a centralized system”, Electr. Power Syst. Res. 96, 16‒22 (2013).
  34.  K. Hyodhyad and K. Supanaroj, “Energy saving project for street lighting of Provincial Electricity Authority (PEA)”, 2nd Joint International Conference on Sustainable Energy and Environment (SEE2006), 2006, pp. 1‒6.
  35.  W. Yan, S.Y.R. Hui, and S.H. Chung, “Energy saving of large-scale high-intensity -discharge lamp lighting networks using a central reactive power control system”, IEEE Trans. Ind. Electron. 50, 3069‒3078 (2009).
  36.  M. Catelani and L. Ciani, “Experimental tests and reliability assessment of electronic ballast system”, Microelectron. Reliab. 52, 1833–1836 (2012).
  37.  J. Molina, L. Sainz, J.J. Mesas, and J.G. Bergas, “Model of discharge lamps with magnetic ballast”, Electr. Power Syst. Res. 95, 112‒120 (2013).
  38.  C.B. Viejo, J.C.A. Anton, A. Robles, F.F. Martin, J.C. Viera, S. Bhosle, and G. Zissis, “Comparison between different discharge lamp models based on lamp dynamic conductance”, IEEE Trans. Ind. Electron. 47, 1983‒1991 (2011).
  39.  J. Mesasa, L. Sainza, and A. Ferrerb, “Deterministic and stochastic assessment of the harmonic currents consumed by discharge lamps”, Electr. Power Syst. Res. 81, 10–18 (2011).
  40.  I. Azcarate, J.J. Gutierrez, A. Lazkano, P. Saiz, K. Redondo, and L.A. Leturiondo, “Experimental study of the response of efficient lighting technologies to complex voltage fluctuations”, Electr. Power Energy Syst. 63, 499–506 (2014).
  41.  A. Dolara, R. Faranda, S. Guzzetti, and S. Leva, “Power Quality in Public Lighting Systems”, Proceedings of the 14th International Conference on Harmonics and Quality of Power, Bergamo, Italy, 2010, pp. 1‒7.
  42.  A. Gil de Castro, M.A. Moreno, L.V. Pallarés, and A.A. Pérez, “Harmonic Effect in Street Lighting”, Proceedings of the 7th International Conference-Workshop Compatibility and Power Electronics (CPE), Tallinn, Estonia, 2011, pp. 16‒21.
  43.  M.J.H. Orzáez, Róchaz J. Sola, and A. Gago-Calderon, “Electrical consequences of large-scale replacement of metal-halide by LED luminaires”, Light. Res. Technol. 50, 282–293 (2016).
  44.  M.H.J. Bollen, S.K. Rönnberg, E.O.A. Larsson, M. Wahlberg, and C.M. Lundmark, “Harmonic Emission from Installations with Energy- Efficient Lighting”, Proceedings of the 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal, 2011, pp. 1‒6.
  45.  EN 50160:2007 “Voltage Characteristics of Electricity Supplied by Public Distribution Systems”, European Union: Brussels, Belgium, (2007).
  46.  R. Sikora, P. Markiewicz, and W. Pabjańczyk, “Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire”, Energies 11, 1386‒1406 (2018).
  47.  R. Sikora, P. Markiewicz, and W. Pabjańczyk, “The Active Power Losses in the Road Lighting Installation with Dimmable LED Luminaires”, Sustainability10, 4742‒4760 (2018).
  48.  IEC 60287-1-1, Electric Cables – Calculation of current rating – calculation of losses – Section 1: General, (2006).
  49.  IEEE Std. 1459-2010. Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, (2010).
  50.  Ustawa z dnia 20 maja 2016 r. o efektywności energetycznej, Dz.U. 2016 poz. 831.
  51.  The Energy Effic. Directive (2012/27/EU).
  52.  R.C. Degeneff, T.M. Halleran, T.M. McKernan, and J.A. Palmer, “Pipe – type cable ampacities in the presence of Harmonics”, IEEE Trans. Power Deliv. 8, 1689 –1695 (1993).
  53.  C. Demoulias, D.P. Labridis, P.S. Dokopoulos, and K. Gouramanis, “Ampacity of Low-Voltage Power Cables Under Nonsinusoidal Currents”, IEEE Trans. Power Deliv. 22, 584‒594 (2007).
  54.  J.J. Desmet, G. Vanalme, R. Belmans, and D. Van Dommelen, “Simulation of losses in LV cables due to nonlinear loads”, 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008, pp. 785‒790.
  55.  A. Hiranandani, “Calculation of cable ampacities including the effects of harmonics”, IEEE Industry Applications Magazine 4, 42‒51 (1998).
  56.  Z. Gabryjelski and Z. Kowalski, Sieci i urządzenia oświetleniowe. Zagadnienie wybrane, Wydawnictwo Politechniki Łódzkiej, Łódź, 1997.
  57.  EN 13201-5:2015. Light and lighting. Road lighting – Part 5: Energy performance indicators.
  58.  “Electricity price statistics”. [Online] Available: https://ec.europa.eu/eurostat/statistics-explained/pdfscache/45239.pdf.
  59.  Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, “Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej”. [Online] Available: http://www.kobize.pl/ [in Polish].
Go to article

Authors and Affiliations

Roman Sikora
1
ORCID: ORCID
Przemysław Markiewicz
1
ORCID: ORCID
Paweł Rózga
1

  1. Lodz University of Technology, Institute of Electrical Power Engineering, ul. Stefanowskiego 18/22, 90-924 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the analysis of the fractal dimension of streamers propagating in mineral oil, under lightning impulse voltage, using the box counting method; the method and technique of calculation are described therein. In the considered experimental conditions, the average velocities of recorded streamers are of 2.4 km/s and 1.8 km/s for positive and negative streamers, respectively; these velocities correspond to the 2nd mode of streamers propagation. It is shown that the streamers present the fractal dimension D ; and the higher D is the bushier are the streamers (i.e. with high branch density). The positive streamers can have higher D than the negative ones, if they are bushier.
Go to article

Bibliography

[1] Abu Shehab W.F., Ali S.A., Alsharari M.I., Lightning protection for power transformers of Aqaba Thermal Power Station, Archives of Electrical Engineering, vol. 69, no. 3, pp. 645–660 (2020), DOI: 10.24425/aee.2020.133923.
[2] Devins J.C., Rzad S.J., Schwabe R.J., Breakdown and pre-breakdown phenomena in liquids, Journal of Applied Physiscs, vol. 52, pp. 4531–4545 (1981), DOI: 10.1063/1.329327.
[3] Beroual A., Tobazeon R., Prebreakdown phenomena in liquid dielectrics, IEEE Transactions on Electrical Insulation, vol. 21, no. 4, pp. 613–627 (1986), DOI: 10.1109/TEI.1986.348967.
[4] Hebner R.E., Measurements of Electrical Breakdown in Liquids, in The Liquid State and its Electrical Properties, vol. B193, Plenum Press (1988).
[5] Badent A., Kist K., Schwabe R.J., Voltage Dependence of Prebreakdown Phenomena in Insulating Oil, Conference Record of the IEEE International Symposium on Electrical Insulation, Pittsburg, PA, USA, pp. 414–417 (1994).
[6] Beroual A., Zahn M., Badent A., Kist K., Schwabe A.J., Yamashita H., Yamazawa K., Danikas M., Chadband W.G., Torshin Y., Propagation and Structure of Streamers in Liquid Dielectrics, IEEE Electrical Insulation Magazine, vol. 14, no. 2, pp. 6–17 (1998), DOI: 10.1109/57.662781.
[7] Lesaint O., Prebreakdown phenomena in liquids: propagation “modes” and basic physical properties, Journal of Physics D-Applied Physics, vol. 49, no. 14, 22 (2016), DOI: 10.1088/0022- 3727/49/14/144001.
[8] Rozga P., Beroual A., Przybylek P., Jaroszewski M., Strzelecki K., A Review on Synthetic Ester Liquids for Transformer Applications, Energies, vol. 13, 6429 (2020), DOI: 10.3390/en13236429.
[9] CIGRE Group TB 856, Dielectric performance on insulating liquids for transformers,WG D1.70 TF3 (2021).
[10] Mandelbrot B.B., Fractals, Form, Chance and Dimension, Freeman, San Francisco, USA (1977), DOI: 10.1016/0012-8252(79)90075-8.
[11] Djemai Z., Beroual A., Fractal Dimension of Discharges Propagation on Insulating Interfaces, Archives of Electrical Engineering, vol. 3, pp. 249–254 (1998).
[12] Boroujeni F.M., Maleki A., Fractal Analysis of Noise Signals of Sampo and John Deere Combine Harvesters in Operational Conditions, Archives of Acoustics, vol. 44, no. 1, pp. 89–98 (2019), DOI: 10.24425/aoa.2019.126355.
[13] Ficker T., Electrostatic discharges and multi-fractal analysis of their Lichtenberg figures, Journal of Physiscs D: Applied Physics, vol. 32, pp. 219–226 (1999).
[14] Sawada Y., Ohta S., Yamazaki M.Y., Honjo H., Self-similarity and a phase transtion-like behaviour of a random growing structure governed by a non-euilibrium parameter, Physics Review A, vol. 26, 3557 (1982), DOI: 10.1103/PhysRevA.26.3557.
[15] Niemeyer L., Pietronero L., Wiesmann H.J., Fractal dimension of dielectric breakdown, Physical Review Letters, vol. 33, pp. 1033–1036 (1984), DOI: 10.1103/PhysRevLett.52.1033.
[16] Wiesmann H.J., Zeller H.R.A., A fractal model of dielectric breakdown and prebreakdown in solid dielectrics, Journal of Applied Physics, vol. 60, pp. 1770–1773 (1986), DOI: 10.1063/1.337219.
[17] Fujimori S., Electric Discharge and Fractals, Japan Journal of Applied Physics, vol. 24, no. 9, pp 1198–1203 (1985).
[18] Kudo K., Fractal analysis of electrical trees, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, no. 5, pp. 713–727 (1998), DOI: 10.1109/94.729694.
[19] Kebbabi L., Beroual A., Fractal analysis of creeping discharge patterns propagating at solid/liquid interfaces: Influence of the nature and geometry of solid insulators, Journal of Physics D: Applied Physics, vol. 39, pp. 177–183 (2006), DOI: 10.1088/0022-3727/39/1/026.
[20] Lichtenberg G.C., Nova methodo naturam ac motum fluidi electrici investigandi, Commentatio Prior, Novi Commentarti Soc. Reg. Sc. Gottingensis, vol. 8, pp. 168–180 (1778).
[21] Beroual A., Dang V-H., Fractal analysis of lightning impulse surface discharges propagating over pressboard immersed in mineral and vegetable oils, IEEE Transacions on Dielectrics and Electrical Insulation, vol. 20, pp. 1402–1408 (2013), DOI: 10.1109/TDEI.2013.6571462.
[22] Beroual A., Coulibaly M.-L., Relationship between the Fractal Dimension of Creeping Discharges Propagating at Solid/Gas Interfaces and the Characteristics Parameters of Interfaces, Interanational Review on Electrical Engineering, vol. 9, no. 2, pp. 460–465 (2014).
[23] Rozga P., Influenece of paper insulation on the prebrakdown phenomena in mineral oil under lightning impulse, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 3, pp. 720–727 (2011), DOI: 10.1109/TDEI.2011.5931058.
[24] Rozga P., Jayasree T., Mohan Rao U., Fofana I., Picher P., Prebreakdown and Breakdown Phenomena in Ester Dielectric Liquids, in Alternative Liquids Dielectrics for High Voltage Transformer Insulation Systems: Performance Analysis and Applications, Wiley-IEEE Press, pp. 147–183 (2021), DOI: 10.1002/9781119800194.ch6.
[25] Rozga P., Rapp K.J., Stanek M., Lightning Properties of Selected Insulating Synthetic Esters and Mineral Oil in Point-to-Sphere Electrode System, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, pp. 1699–1705 (2018), DOI: 10.1109/TDEI.2018.007069.
[26] Lundgaard L.E., Linhjell D., Berg G., Streamer/leaders from a metallic particle between parallel plane electrodes in transformer oil, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 8, pp. 1054–1063 (2001), DOI: 10.1109/94.971465.
Go to article

Authors and Affiliations

Viet-Hung Dang
1
ORCID: ORCID
Abderrahmane Beroual
2
ORCID: ORCID
Pawel Rozga
3
ORCID: ORCID

  1. Electric Power University, Vietnam
  2. University of Lyon, Ecole Centrale de Lyon, France
  3. Lodz University of Technology, Poland

This page uses 'cookies'. Learn more