Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

2-phase composites are often used for high demanding parts that can undergo impact loads. However, most of the papers on dynamic loading concerns layered composites. In our opinion, the impact loads are not considered thoroughly enough. Good examples of 2-phase composites are: (1) a WC/Co cermet or (2) a monolithic ceramic Al2O3/ZrO2. The WC/Co cermet is often modelled as having ductile elasto-plastic Co matrix and ideally elastic WC grains. It is because of very high crushing resistivity of the WC.

In this paper, we present an extension to earlier elaborated models ([44]) with the assumption of ideal elasticity of the grains. The new and general numerical model for high-velocity impact of the 2-phase composites is proposed. The idea of this novelty relies on the introduction of crushability of grains in the composite and thermo-mechanical coupling. The model allows for description of the dynamic response both composite polycrystals made of: (1) 2 different purely elastic phases (e.g. Al2O3/ZrO2) or (2) one elastic phase and the second one plastic (e.g. cermet WC/Co), or (3) 2 elasto-plastic phases with different material properties and damage processes. In particular, the analysis was limited to the cases (2) and (3), i.e. we investigated the WC/Co polycrystal that impacted a rigid wall with the initial velocity equal to 50 m/s.

Go to article

Authors and Affiliations

E. Postek
T. Sadowski
Download PDF Download RIS Download Bibtex

Abstract

In the last 20 years, a new meshless computational method has been developed that is called peridynamics. The method is based on the parallelized code. The subject of the study is the deformation of open-cell copper foams under dynamic compression. The computational model of virtual cellular material is considered. The skeleton structure of such a virtual cellular material can be rescaled according to requirements. The material of the skeleton is assumed as the oxygen free high conductivity (OFHC) copper. The OFHC copper powder can be applied in additive manufacturing to produce the open-cell multifunctional structures, e.g., crush resistant heat exchangers, heat capacitors, etc. In considered peridynamic computations the foam skeleton is described with the use of an elastic-plastic model with isotropic hardening. The dynamic process of compression and crushing with different impact velocities is simulated.

Go to article

Authors and Affiliations

E. Postek
R.B. Pęcherski
Z. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The mechanical response of interpenetrating co-continuous composite Al-Si12/SiC3D was described for uniaxial tension and compression. The internal structure of the IPC was examined by optical microscopy and micro-CT. The apparent density and Young’s modulus were assessed theoretically and experimentally. Uniaxial tensile tests were performed using the prismatic samples of dimensions 1 mm × 2 mm × 30 mm. Cylindrical samples of diameters ϕ = 5 mm and height h = 10 mm were subjected to quasi-static uniaxial compressive loading. During tests, the side surfaces of the specimen were observed using a digital image correlation system (DIC) to find strain fields and to monitor the surface cracks development in the complex internal microstructure of the IPC.
The analyzed two-phase ICP was manufactured using ceramic foam SiC infiltrated by alloy Al-Si12. This material finds application in cosmic, airplane, or automobile industries, due to their excellent tribological, heat distribution, and ballistic properties.
Obtained results show different modes of microcracking and fracture of cylindrical and prismatic samples. They indicate the substantial influence of the ceramic skeleton on the behavior of the IPC under uniaxial states of loading. Different modes of damage related to the tension or compression loading were described in detail. The results can find application in the designing process of modern co-continuous IPCs and further development of the numerical models of degradation processes.
Go to article

Authors and Affiliations

D. Pietras
1
T. Sadowski
1
M. Boniecki
2
E. Postek
3

  1. Lublin University of Technology, 20-618 Lublin, 38D Nadbystrzycka Str., Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Photonics , 02-668 Warsaw, Poland
  3. Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland

This page uses 'cookies'. Learn more