Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to show the basic principles of the anaerobic digestion process. All the stages of degradation, such as hydrolysis, acidogenesis, acetogenesis and methanogenesis are characterized. Biodegradable organic matter consists of three main types of substances: carbohydrates, proteins and lipids; the metabolic pathways of their decomposition are described. The last part of the paper presents the co-digestion process, its benefits and technological parameters required to make that process attractive from an economical and environmental point of view.
Go to article

Authors and Affiliations

Agnieszka Montusiewicz
Magdalena Lebiocka
Małgorzata Pawłowska
Download PDF Download RIS Download Bibtex

Abstract

The landfill gas (LFG), produced during decomposition of the organic fraction of waste is a major source of air pollutants. It consists mainly of methane and carbon dioxide, but also contains additional gases, such as nitrogen, oxygen, hydrogen, carbon monoxide, hydrogen sulphide, and a large number of trace components. Aliphatic and aromatic hydrocarbons, halogenated hydrocarbons, heterocyclic compounds, alcohols, aldehydes, ketones, terpenes and siloxanes belong to this group. This work presents the results of field studies concerning the concentration of over fifty non-methane organic compounds in municipal solid waste landfill gas. The sites examined were located in the Middle East macroregion of Poland. The landfills were different in the respect to size, morphology, and age of stored waste. The results reveal that the highest concentrations of the majority of the examined compounds were observed in gas released from the largest landfill at which the waste was not pre-treated prior to deposition. Concentrations often exceeded those found in the literature data. Deposition of waste after separation of biofraction and recyclable materials significantly decreased concentrations of the majority of NMOCs in the LFG.
Go to article

Authors and Affiliations

Małgorzata Pawłowska
Jacek Czerwiński
Witold Stępniewski
Download PDF Download RIS Download Bibtex

Abstract

Landfilling is the main method of waste disposal in Poland as well as in most countries all over the world. Leachate originating during waste deposition may be a source of ground water pollution. The aim of the paper was to characterize and compare the composition of leachate originating from three landfills in Lublin Province (Poland) and differing in their methods of waste pre-treatment. Ozonation was used in the initial trials to treat landfill leachate. Experiments were carried out to determine whether ozonation using a single dose of 1.8 gO,lm3 has the same effect on the efficiency of organic removal from leachates characterized by different ages and degrees of solid waste pretreatment. From analyses (BOD5, COD, N-NH,, heavy metals) it was concluded, that excluding some fractions (glass, paper, plastics, aluminum, fine organic fraction) from the waste mass affects the leachate quality. The studied oxidizing method was found to influence the BOD5 and COD levels
Go to article

Authors and Affiliations

Magdalena Lebiocka
Agnieszka Montusiewicz
Małgorzata Pawłowska
Janusz Ozonek
Ewa Szkutnik
Marcin Rosłan
Download PDF Download RIS Download Bibtex

Abstract

The research was intended to develop a biocomposite as an alternative biodegradable material, for the production of, e.g., disposable utensils. The author’s tested thermoplastic maize starch, both without additives and with the addition of crumbled fl ax fi ber in the share of 10, 20 and 30 wt%. The plasticizer added was technical glycerin and the samples were produced by a single-screw extruder. The mechanical strength tests were performed, including the impact tensile test and three-point bending fl exural test. Afterwards, the samples were tested for biodegradability under anaerobic conditions. The methane fermentation process was carried in a laboratory bioreactor under thermophilic conditions with constant mixing of the batch. All samples proved to be highly susceptible to biodegradation during the experiment, regardless of the fl ax fi ber share. The biogas potential was about 600 ml·g-1, and the methane concentration in biogas ranged from 66.8 to 69.6%. It was found, that the biocomposites can be almost completely utilized in bioreactors during the biodegradation process. The energy recovery in the decomposition process with the generation of signifi cant amount of methane constitutes an additional benefi t.

Go to article

Authors and Affiliations

Gabriel Borowski
1
ORCID: ORCID
Tomasz Klepka
2
Małgorzata Pawłowska
1
Maria Cristina Lavagnolo
3
Tomasz Oniszczuk
4
Agnieszka Wójtowicz
4
Maciej Combrzyński
4

  1. Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
  2. Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
  3. Department of Civil Environmental and Architectural Engineering, University of Padova, Italy
  4. Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The reports of Intergovernmental Panel for Climate Change indicate that the growing emission of greenhouse gases, produced from the combustion of fossil fuels, mainly carbon dioxide, leads to negative climate changes. Therefore, the methods of mitigating the greenhouse gases emission to the atmosphere, especially of carbon dioxide, are being sought. Numerous studies are focused on so-called geological sequestration, i.e. injecting carbon dioxide to appropriate geological strata or ocean waters. One of the methods, which are not fully utilized, is the application of appropriate techniques in agriculture. The plant production in agriculture is based on the absorption of carbon dioxide in the photosynthesis process. Increasing the plant production directly leads to the absorption of carbon dioxide. Therefore, investigation of carbon dioxide absorption by particular crops is a key issue. In Poland, ca. 7.6 mln ha of cereals is cultivated, including: rye, wheat, triticale, oat and barley. These plants absorb approximately 23.8 mln t C annually, including 9.8 mln t C/yr in grains, 9.4 mln t C/yr in straw and 4.7 mln t C/yr in roots. The China, these cereals are cultivated on the area over 24 mln ha and absorb 98.9 mln t C/yr, including 55 mln tC/yr in grains, 36 in straw, and 7.9 mln t C/yr in roots. The second direction for mitigating the carbon dioxide emission into the atmosphere involves substituting fossil fuels with renewable energy sources to deliver primary energy. Cultivation of winter cereals as cover crops may lead to the enhancement of carbon dioxide removal from the atmosphere in the course of their growth. Moreover, the produced biomass can be used for energy generation.

Go to article

Authors and Affiliations

Lucjan Pawłowski
Małgorzata Pawłowska
Wojciech Cel
Lei Wang
Chong Li
Tingting Mei

This page uses 'cookies'. Learn more