Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the performance and frequency bandwidth of the piezoelectric energy harvester (PZEH) is improved by introducing two permanent magnets attached to the proof mass of a dual beam structure. Both magnets are in the vicinity of each other and attached in such a way to proof mass of a dual beam so that they create a magnetic field around each other. The generated magnetic field develops a repulsive force between the magnets, which improves electrical output and enhances the bandwidth of the harvester. The simple rectangular cantilever structure with and without magnetic tip mass has a frequency bandwidth of 4 Hz and 4.5 Hz, respectively. The proposed structure generates a peak voltage of 20 V at a frequency of 114.51 Hz at an excitation acceleration of 1 g (g= 9.8 m/s2 ). The peak output power of a proposed structure is 25.5 µW. The operational frequency range of a proposed dual beam cantilever with a magnetic tip mass of 30 mT is from 102.51 Hz to 120.51 Hz, i.e., 18 Hz. The operational frequency range of a dual beam cantilever without magnetic tip mass is from 104.18 Hz to 118.18 Hz, i.e., 14 Hz. There is an improvement of 22.22% in the frequency bandwidth of the proposed dual beam cantilever with a magnetic tip mass of 30 mT than the dual beam without magnetic tip mass.

Go to article

Bibliography

  1.  P. Glynne-Jones, M.J. Tudor, S.P. Beeby, and N.M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems”, Sens. Actuators, A, vol. 110, no. 1–3, pp. 344– 349, 2004, doi: 10.1016/j.sna.2003.09.045.
  2.  P.D. Mitcheson, P. Miao, B.H. Stark, E.M. Yeatman, A.S. Holmes, and T.C. Green, “MEMS electrostatic micropower generator for low frequency operation”, Sens. Actuators, A,vol. 115, no. 2–3, pp. 523–529, 2004, doi: 10.1016/j.sna.2004.04.026.
  3.  P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, and T.C. Green, “Energy harvesting from human and machine motion for wireless electronic devices”, Proc. IEEE, vol. 96, no. 9, pp. 1457–1486, 2008, doi: 10.1109/ JPROC.2008.927494.
  4.  M. Ostrowski, B. Błachowski, M. Bocheński, D. Piernikarski, P. Filipek, and W. Janicki, “Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers”, Bull. Pol. Acad. Sci. Tech. Sci. vol. 68, no. 6, pp. 1373–1383, 2020, doi: 10.24425/bpasts.2020.135384.
  5.  A. Anand, S. Pal, and S. Kundu, “Multi-perforated EnergyEfficient Piezoelectric Energy Harvester Using Improved Stress Distribution”, IETE J. Res., pp. 1–16, 2021, doi: 10.1080/03772063.2021.1913071.
  6.  A. Anand, S. Naval, P.K. Sinha, N.K. Das, and S. Kundu, “Effects of coupling in piezoelectric multi-beam structure”, Microsyst. Technol., vol. 26, no. 4, pp. 1235–1252, 2020, doi: 10.1007/s00542-019-04653-3.
  7.  A. Anand, and S. Kundu, “Improvement of Output Power in Piezoelectric Energy Harvester under Magnetic Influence”, Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC 2019 IEEE), 2019, pp. 382–385, doi: 10.1109/DEVIC.2019.8783607.
  8.  A. Anand and S. Kundu, “Design of a spiral-shaped piezoelectric energy harvester for powering pacemakers”, Nanomater. Energy, vol. 8, no. 2, pp. 139–150, 2019, doi: 10.1680/jnaen.19.00016.
  9.  A. Anand and S. Kundu, “Design of Mems Based Piezoelectric Energy Harvester for Pacemaker”, Proceedings of 3rd International Conference on Devices for Integrated Circuit (DevIC 2019), 2019, pp. 465–469, doi: 10.1109/DEVIC.2019.8783311.
  10.  S. Roundy, P.K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes”, Comput. Commun., vol. 26, no. 11, pp. 1131–1144, 2003, doi: 10.1016/S0140-3664(02)00248-7.
  11.  S. Naval, P.K. Sinha, N.K. Das, A. Anand, and S. Kundu, “Wideband piezoelectric energy harvester design using parallel connection of multiple beams”, Int. J. Nanopart., vol. 12, no. 3, pp. 206–223, 2020, doi: 10.1504/IJNP.2020.109545.
  12.  S. Naval, P.K. Sinha, N.K. Das, A. Anand, and S. Kundu, “Bandwidth Increment of Piezoelectric Energy Harvester using Multibeam Structure”, Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC 2019), 2019, pp. 370–373, doi: 10.1109/ DEVIC.2019.8783724.
  13.  H. S. Kim, J. H. Kim, and J. Kim, “A review of piezoelectric energy harvesting based on vibration”, Int. J. Precis. Eng. Manuf., vol. 12, no. 6, pp. 1129–1141, 2011, doi: 10.1007/s12541-0110151-3.
  14.  K. Sokół,“Passive control of instability regions by means of piezoceramic elements”, Lat. Am. J. Solids Struct., vol. 18, no. 1, p. e320, 2021, doi: 10.1590/1679-78256015.
  15.  H. Irschik, “A review on static and dynamic shape control of structures by piezoelectric actuation”, Eng. Struct., vol. 24, no. 1, pp. 5–11, 2002, doi: 10.1016/S0141-0296(01)00081-5.
  16.  J. Peng, G. Zhang, M. Xiang, H. Sun, X. Wang, and X. Xie, “Vibration control for the nonlinear resonant response of a piezoelectric elastic beam via time-delayed feedback”, Smart Mater. Struct., vol. 28, no. 9, p. 095010, 2019, doi: 10.1088/1361-665X/ab2e3d.
  17.  H. Hu, Y. Han, A. Song, S. Chen, C. Wang, and Z. Wang, “A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch”, Sensors, vol. 14, no. 3, pp. 4899–4913, 2014, doi: 10.3390/s140304899.
  18.  M.F. Daqaq, R. Masana, A. Erturk, and D. Dane Quinn, “On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion”, Appl. Mech. Rev., vol. 66, no. 4, p. 040801, 2014, doi: 10.1115/1.4026278.
  19.  V.R. Challa, M.G. Prasad, Y. Shi, and F.T. Fisher, “A vibration energy harvesting device with bidirectional resonance frequency tunability”, Smart Mater. Struct., vol. 17, no. 1, p. 015035, 2008, doi: 10.1088/0964-1726/17/01/015035.
  20.  D.A. Barton, S.G. Burrow, and L.R. Clare, “Energy harvesting from vibrations with a nonlinear oscillator”, J. Vib. Acoust., vol. 132, no. 2, 2010, doi: 10.1115/1.4000809.
  21.  S.C. Stanton, C.C. McGehee, and B.P. Mann, “Reversible hysteresis for broadband magnetopiezoelastic energy harvesting”, Appl. Phys. Lett., vol. 95, no. 17, p. 174103, 2009, doi: 10.1063/1.3253710.
  22.  A. Erturk and D.J. Inman, “Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling”, J. Sound. Vib., vol. 330, no. 10, pp. 2339–2353, 2011, doi: 10.1016/j.jsv.2010.11.018.
  23.  S. Zhou, J. Cao, A. Erturk, and J. Lin, “Enhanced broadband piezoelectric energy harvesting using rotatable magnets”, Appl. Phys. Lett., vol. 102, no. 17, p. 173901, 2013, doi: 10.1063/1.4803445.
  24.  S. Zhou, J. Cao, W. Wang, S. Liu, and J. Lin, “Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration”, Smart Mater. Struct., vol. 24, no. 5, p. 055008, 2015, doi: 10.1088/0964-1726/24/5/055008.
  25.  S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, and Z. Wang, “Broadband tristable energy harvester: modeling and experiment verification”, Appl. Energy; vol. 133, pp. 33–39, 2014, doi: 10.1016/j.apenergy.2014.07.077.
  26.  L. Haitao, Q. Weiyang, L. Chunbo, D. Wangzheng, and Z. Zhiyong, “Dynamics and coherence resonance of tristable energy harvesting system”, Smart Mater. Struct., vol. 25, no. 1, p. 015001, 2015, doi: 10.1088/0964-1726/ 25/1/015001.
  27.  J.Y. Cao, S.X. Zhou, W. Wang, and J. Lin, “Influence of potential well depth on nonlinear tristable energy harvesting”, Appl. Phys. Lett., vol. 106, no. 7, p. 173903, 2015, doi: 10.1063/1.4919532.
  28.  P. Kim and J. Seok, “A multi-stable energy harvester: dynamic modeling and bifurcation analysis”, J. Sound Vib., vol. 333, no. 21, pp. 5525–5547, 2014, doi: 10.1016/j.jsv. 2014.05.054.
  29.  Z. Zhou, W. Qin, Y. Yang, and P. Zhu, “Improving efficiency of energy harvesting by a novel penta-stable configuration”, Sens. Actuators, A,, vol. 265, pp. 297–305, 2017, doi: 10.1016/j.sna.2017.08.039.
  30.  D. Tan, Y.G. Leng, and Y.J. Gao, “Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field”, Eur. Phys. J. Spec. Top., vol. 224, no. 14, pp. 2839–2853, 2015, doi: 10.1140/epjst/e2015-02592-6.
  31.  D. Zhu, S. Roberts, M.J. Tudor, and S.P. Beeby, “Design and experimental characterization of a tunable vibration-based electromagnetic micro- generator”, Sens. Actuators, A,, vol. 158, no. 2, pp. 284–293, 2010, doi: 10.1016/j.sna.2010.01.002.
  32.  W.J. Su, J. Zu, and Y. Zhu, “Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester”, J. Intell. Mater. Syst. Struct., vol. 25, no. 4, pp. 430–442, 2014, doi: 10.1177/1045389X 13498315.
  33.  D. Guo, X.F. Zhang, H.Y. Li, and H. Li, “Piezoelectric Energy Harvester Array with Magnetic Tip Mass”, in ASME International Mechanical Engineering Congress and Exposition, 2015, vol. 57403, p. V04BT04A045, doi: 10.1115/IMECE201551044.
  34.  S.S. Rao, Vibration of continuous systems, John Wiley and Sons, Ltd, 2019, doi: 10.1002/9781119424284.
Go to article

Authors and Affiliations

Ashutosh Anand
1 2
ORCID: ORCID
Srikanta Pal
2
Sudip Kundu
3
ORCID: ORCID

  1. Department of Electronics and Communication Engineering, Presidency University Bangalore, India
  2. Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra Ranchi, India
  3. Department of Electronics and Communication Engineering and Center for Nanomaterials, National Institute of Technology Rourkela, India

This page uses 'cookies'. Learn more