Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the studywas to find an effective method of ripple torque compensation for a direct drive with a permanent magnet synchronous motor (PMSM) without time-consuming drive identification. The main objective of the research on the development of a methodology for the proper teaching a neural network was achieved by the use of iterative learning control (ILC), correct estimation of torque and spline interpolation. The paper presents the structure of the drive system and the method of its tuning in order to reduce the torque ripple, which has a significant effect on the uneven speed of the servo drive. The proposed structure of the PMSM in the dq axis is equipped with a neural compensator. The introduced iterative learning control was based on the estimation of the ripple torque and spline interpolation. The structurewas analyzed and verified by simulation and experimental tests. The elaborated structure of the drive system and method of its tuning can be easily used by applying a microprocessor system available now on the market. The proposed control solution can be made without time-consuming drive identification, which can have a great practical advantage. The article presents a new approach to proper neural network training in cooperation with iterative learning for repetitive motion systems without time-consuming identification of the motor.

Go to article

Authors and Affiliations

Adrian Wójcik
Tomasz Pajchrowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the problem of sensorless control of a permanent magnets synchronous motor (PMSM) without a damping cage for fan applications. Frequency control was used according to the principle of v/f = const. In order to reduce the power consumption of the drive system, the optimal voltage to the motor frequency characteristics was tested in the laboratory. The experimental studies was performed on a laboratory set of a drive consisting of two coupled PMSM machines, where one machine was supplied by a transistor inverter and the other was a passive load. A new criterion based on minimizing the module of stator current vector was proposed and an optimization algorithm in steady states was tested. The results of laboratory tests confirmed the validity of the applied solution for the fan drive.

Go to article

Authors and Affiliations

Stefan Brock
Tomasz Pajchrowski

This page uses 'cookies'. Learn more