Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We investigated the effect of Cr thin film deposition on the thermal stability and corrosion resistance of hot-dip aluminized steel. A high-quality Cr thin film was deposited on the surface of the Al-9 wt. % Si-coated steel sheets by physical vapor deposition. When the Al-Si coated steel sheets were exposed to a high temperature of 500℃, Fe from the steel substrate diffused into the Al-Si coating layer resulting in discoloration. However, the highly heat-resistant Cr thin film deposited on the Al-Si coating prevented diffusion and surface exposure of Fe, improving the heat and corrosion resistances of the Al-Si alloy coated steel sheet.
Go to article

Authors and Affiliations

Jae-Hyeon Kim
1
Jung-Ha Lee
2
Seung-Beop Lee
2
Sung-Jin Kim
3
ORCID: ORCID
Min-Suk Oh
1
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering And Research Center For Advanced Materials Development, Jeonju, Republic of Korea
  2. Jeonbuk National University, School of International Engineering And Science, Jeonju, Republic of Korea
  3. Sunchon National University, Department of Advanced Materials Engineering, Sunchon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

We investigated the influence of steel surface properties on the wettability of zinc (Zn). Our main objective is to address the selective oxidation of solute alloying elements and enhance the wetting behavior of Zn on advanced high strength steel (AHSS) by employing an aluminum (Al) interlayer through the physical vapor deposition technique. The deposition of an Al interlayer resulted in a decrease in contact angle and an increase in spread width as the molten Zn interacted with the Al interlay on the steel substrate. Importantly, the incorporation of an Al interlayer demonstrated a significant improvement in wettability by substantially increasing the work of adhesion compared to the uncoated AHSS substrate.
Go to article

Authors and Affiliations

Srinivasulu Grandhi
1
Kwang-Hyeok Jin
1
Min-Su Kim
ORCID: ORCID
Dong-Joo Yoon
2
Seung-Hyo Lee
3
Min-Suk Oh
4
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering and Research Center for Advanced Materials Developm ent, Jeonju,Republic of Korea
  2. Sunchon National University, Center for Practical Use of Rare Materials, Sunchon, Republic of Korea
  3. Korea Maritime & Ocean University, Department of Ocean Advanced of Materials Convergence Engineering, Pusan, Republic of Korea
  4. Jeonbuk National University, Division of Advanced Materials Engineering and Research Center for Advanced Materials Developm ent, Jeonju, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The effect of plasma-radical change on the surface properties of Zn-Mg-Al ternary-alloy-coated steel sheets during atmospheric-pressure (AP) plasma treatment using different process gases: O 2, N 2, and compressed air was investigated. The plasma-induced radicals promoted the formation of chemical particles on the surface of the Zn-Mg-Al coating, thereby increasing the surface roughness. The surface energy was calculated using the Owen-Wendtgeometric equation. Contact angle measurements indicated that the surface free energy of the alloy sheets increased upon AP plasma treatment. The surface properties of the Zn-Mg-Al coating changed more significantly in the order air > O 2 > N 2 gas, indicating that the plasma radicals facilitated the carbonization and hydroxylation of the Mg and Al components during the AP plasma treatment.
Go to article

Authors and Affiliations

Chang-U Jeong
1
Jae-Hyeon Kim
1
Je-Shin Park
1
ORCID: ORCID
Min-Su Kim
2
ORCID: ORCID
Sung-Jin Kim
3
ORCID: ORCID
Min-Suk Oh
1
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju, Republic of Korea
  2. Korea Institute of Industrial Technology, Gimje, Republic of Korea
  3. Sunchon National University, Department of Advanced Materials Engineering, Sunchon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

A Si-Fe-Al ternary oxide-based micropowder coating was used to prevent the formation of a Zn coating on steel during the hot-dip Zn galvanizing process to reduce the welding fume and defects generated during the welding of Zn-galvanized steel. The composition ratio of the oxide powder was optimized and its microstructure and weldability were evaluated. The optimized oxide coating was stable in the hot-dip galvanizing bath at 470°C and effectively inhibited the formation of Zn coating. The Zn residue could be easily removed with simple mechanical impact. The proposed coating reduced Zn fume and prevented the residual Zn from melting in the weld bead during high-temperature welding, thus reducing the number of welding defects. The results indicated that this pretreatment can simplify the manufacturing process and shorten the process time cost-effectively.
Go to article

Authors and Affiliations

Seong-Min So
1
Ki-Yeon Kim
1
Il-Song Park
1
ORCID: ORCID
Seok-Jae Lee
1
ORCID: ORCID
Dong-Jin Yoo
2
Yeon-Won Kim
3
ORCID: ORCID
Min-Suk Oh
1
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju, Republic of Korea
  2. Jeonbuk National University, Department of Energy Storage/Conversion Engineering Of Graduate School, Department of Life Science, Hydrogen and Fuel Cell Research Center, Jeonju, Republic of Korea
  3. Mokpo National Maritime University, Division of Marine Mechatronics, Mokpo, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The effects of the sintering holding time and cooling rate on the microstructure and mechanical properties of nanocrystalline Fe-Cr-C alloy were investigated. Nanocrystalline Fe-1.5Cr-1C (wt.%) alloy was fabricated by mechanical alloying and spark plasma sintering. Different process conditions were applied to fabricate the sintered samples. The phase fraction and grain size were measured using X-ray powder diffraction and confirmed by electron backscatter diffraction. The stability and volume fraction of the austenite phase, which could affect the mechanical properties of the Fe-based alloy, were calculated using an empirical equation. The sample names consist of a number and a letter, which correspond to the holding time and cooling method, respectively. For the 0A, 0W, 10A, and 10W samples, the volume fraction was measured at 5.56, 44.95, 6.15, and 61.44 vol.%. To evaluate the mechanical properties, the hardness of 0A, 0W, 10A, and 10W samples were measured as 44.6, 63.1, 42.5, and 53.8 HRC. These results show that there is a difference in carbon diffusion and solubility depending on the sintering holding time and cooling rate.
Go to article

Bibliography

[1] E . Yajima, T. Miyazaki, T. Sugiyama, H. Terajima, Trans. JIM 15, 173 (1974).
[2] E .C. Santos, K. Kida, T. Honda, J. Rozwadowska, K. Houri, Adv. Mater. Res. 217, 982 (2011).
[3] I . Yoshida, K. Yamamoto, K. Domura, K. Mizobe, K. Kida, Mater. Sci. Forum 867, 55 (2016).
[4] O . Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16, 1391 (2000).
[5] G. Frommeyer, U. Brux, P. Neumann, ISIJ Int. 43, 438 (2003).
[6] D.S. Park, S.J. Oh, I.J. Shon, S.J. Lee, Arch. Metall. Mater. 63, 1479 (2018).
[7] S.G. Choi, J.H. Jeon, N.H. Seo, Y.H. Moon, I.J. Shon, S.J. Lee, Arch. Metall. Mater. 65, 1001 (2020).
[8] S.J. Lee, S. Lee, B.C. De Cooman, Scr. Mater. 64, 649 (2011).
[9] Y. Sakuma, O. Matsumura, H. Takechi, Met. Trans. A 22, 489 (1991).
[10] Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, S. Takaki, ISIJ Int. 53, 1224 (2013).
[11] K. Sugimoto, M. Misu, M. Kobayashi, H. Shirasawa, ISIJ Int. 33, 775 (1993).
[12] S.J. Lee, S. Lee, B.C. De Cooman, Int. J. Mater. Res. 104, 423 (2013).
[13] J.S. Benjamin, T.E. Volin, Met. Trans. 5, 1929 (1974).
[14] S.I. Cha, S.H. Hong, B.K. Kim, Mater. Sci. Eng. A 351, 31 (2003).
[15] H .W. Zhang, R. Gopalan, T. Mukai, K. Hono, Scr. Mater. 53, 863 (2005).
[16] G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953).
[17] B.L. Averbach, M. Cohen, Trans. AIME 176, 401 (1948).
[18] H . Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, Acta Mater. 59, 4002 (2011).
[19] S.J. Oh, J.H. Jeon, I.J. Shon, S.J. Lee, J. Korean Powder Metall. Inst. 26, 389 (2019).
[20] I . Seki, K. Nagata, ISIJ Int. 45, 1789 (2005).
[21] G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Mater. Sci. Eng. A 527, 2759 (2010).
[22] F. Martin, C. Garcia, Y. Blanco, M.L. Rodriguez-Mendez, Mater. Sci. Eng. A 642, 360 (2015).
Go to article

Authors and Affiliations

Gwanghun Kim
1
ORCID: ORCID
Junhyub Jeon
1
ORCID: ORCID
Namhyuk Seo
1
ORCID: ORCID
Seunggyu Choi
1
Min-Suk Oh
1
ORCID: ORCID
Seung Bae Son
1
ORCID: ORCID
Seok-Jae Lee
1
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea

This page uses 'cookies'. Learn more