Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the hardness and reduced modulus of elasticity of juvenile wood of Scots pine (Pinus sylvestris L.) using the nanoindentation method, and then to compare the results obtained with those of mature wood. The hardness of juvenile pine wood determined by means of the nanoindentation method was 0.444 GPa while for mature wood it was 0.474 GPa. Statistically significant differences between the values were found. The reduced modulus of elasticity in juvenile wood was 14.0 GPa and 16.4 GPa in mature wood. Thus, the hardness values obtained were about 7% higher, while the modulus of elasticity was 17% higher in mature wood. All determinations were made in the S2-layer of the secondary cell wall.

Go to article

Authors and Affiliations

P. Mania
M. Nowicki
Download PDF Download RIS Download Bibtex

Abstract

To this day, most of the papers related to hybrid joints were focused on single and double lap joints in which shear deformation and degradation was the dominant phenomenon. However, in real constructions, complex state of loads can be created by: a) torsion with shear, b) bending with shear, c) torsion with tensile.

Analytical and numerical computation for simple mechanical joints is known, however, the introduction of an adhesive layer to this joint makes the load transferred both through: (1) the adhesive and (2) mechanical fasteners. There is also an interaction between the amount and stiffness of mechanical fasteners and the strength of the adhesive layer.

The paper presents the results of numerical calculations for the bending with shear type of load for the hybrid structural joint and corresponding simple joints by: (1) pure adhesion and (2) rivets with different quantity maintaining the same cross-sectional area. A total of 9 simulations were performed for: (1) 4 types of pure rivets connections, (2) pure adhesive joint and (3) 4 kinds of hybrid joints. The surface-based cohesive behavior was used for creation of the adhesive layer, whereas the rivets were modelled by connector type fasteners, which simplify complexity of the numerical model. The use of connectors allowed for effort assessment taking into account damage in both types of connections. Application of connector elements can be useful for larger structures modelling, e.g. aircraft fuselage, where the number of mechanical joints is significant and complex load conditions occur.

Go to article

Authors and Affiliations

T. Sadowski
M. Nowicki
P. Golewski
Download PDF Download RIS Download Bibtex

Abstract

We propose a class of m-crane control systems, that generalizes two- and three-dimensional crane systems. We prove that each representant of the described class is feedback equivalent to the second order chained form with drift. In consequence, we prove that it is differentially flat. Then we investigate its control properties and derive a control law for tracking control problem.

Go to article

Authors and Affiliations

M. Nowicki
W. Respondek
J. Piasek
K. Kozłowski

Authors and Affiliations

M. Figlerowicz
J.E. Frydrych-Tomczak
B. Uszczyńska
T. Ratajczak
W.T. Markiewicz
M. Nowicki
H. Maciejewski
M.K. Chmielewski

This page uses 'cookies'. Learn more