Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A microstructural model of Red Blood Cell (RBC) behaviour was proposed. The erythrocyte is treated as a viscoelastic object, which is denoted by a network of virtual particles connected by elastic springs and dampers (Kelvin-Voigt model). The RBC is submerged in plasma modelled by lattice Boltzmann fluid. Fluid – structure interactions are taken into account. The simulations of RBC behaviour during flow in a microchannel and wall impact were performed. The results of RBC deformation during the flow are in good agreement with experimental data. The calculations of erythrocyte disaggregation from the capillary surface show the impact of RBC structure stiffness on the process.

Go to article

Authors and Affiliations

Rafał Przekop
Igor Majewski
Arkadiusz Moskal
Download PDF Download RIS Download Bibtex

Abstract

Aflexible fractal-like aggregate modelwas used to study deformation and fragmentation of the structure of fractal-like aggregates via their impaction with rigid rough surface.Aggregateswere conveyed one at the time towards a surface under vacuum conditions. The number of primary particles remaining in each fragment, ratio of average fragment radius of gyration after impaction to the average fragment initial radius of gyration and ratio of average coordination number to the initial coordination number were monitored for each individual aggregate. Results demonstrate that depending on the impact velocity, the fractal dimension of the aggregate, the strength of bonds between primary particles, the stiffness of the aggregate structure and the diameter of primary particle composing an aggregate, restructuring or breakage of the aggregate occur. Moreover, in the analysis of the ratio of coordination number of aggregates after impaction to the initial coordination number, three regimes were distinguished: first no deformation at low impact velocities, second restructurisation regime and finally fragmentation regime where partial or total fragmentation of aggregates was observed.

Go to article

Authors and Affiliations

Łukasz Żywczyk
Arkadiusz Moskal
Rafał Przekop
Download PDF Download RIS Download Bibtex

Abstract

The opportunity to assess haemolysis in a designed artificial heart seems to be one of the most important stages in construction. We propose a new method for assessing haemolysis level in a rotary blood pump. This method is based on CFD calculations using large eddy simulations (LES). This paper presents an approach to haemolysis estimation and shows examples of numerical simulation. Our method does not determine the value of haemolysis but allows for comparison of haemolysis levels between different artificial heart constructions.

Go to article

Authors and Affiliations

Maciej Szwast
Arkadiusz Moskal
Wojciech Piątkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the studies was to estimate efficiency of delivering nebulised drugs into the lower respiratory tract through endotracheal tubes (ET tubes) which are commonly used in the treatment of uncooperative patients. Water solution of Disodium Cromoglycate (DSCG) was nebulised with a constant air flow (25 l/min). Experimental studies were done for eight ET tubes with varying sizes (internal diameter, length) and made of two different materials. Size distribution of aerosol leaving ET tubes was determined with the use of aerosol spectrometer. Fine Particle Fraction (FPF) and Mass Median Aerodynamic Diameter (MMAD) were calculated for the aerosol leaving each tube. Additionally, mass of the Disodium Cromoglycate deposited into each endotracheal tube was determined. ET tubes can significantly influence the parameters of delivered aerosol depending on their diameter. FPF of aerosol delivered in to the respiratory tract is lower if small endotracheal tubes are used. However, MMAD and FPF for large endotracheal tubes are almost identical with MMAD and FPF from nebuliser. The results indicate that a substantial fraction of large droplets is eliminated from the aerosol stream in long endotracheal tubes (270 mm). In this case the mass of drug delivered through ET tubes is reduced but the content of small droplets increases (high value of FPF).

Go to article

Authors and Affiliations

Arkadiusz Moskal
Agata Penconek
Marcin Odziomek
Agata Niedzielska
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the influence of selected nanoparticles, namely diesel exhaust particles, Arizona test dust, silver and gold on the rheology of human blood. The rheological properties of human blood were determined with the use of a modular rheometer, at two various temperatures, namely 36.6◦C and 40◦C. Experimental results were used to calculate the constants in blood constitutive equations. The considered models were power-law, Casson and Cross ones. The obtained results demonstrate that the presence of different nanoparticles in the blood may have different effect on its apparent viscosity depending on the type of particles and shear rate.
Go to article

Authors and Affiliations

Urszula Michalczuk
1
Rafał Przekop
1
Arkadiusz Moskal
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Chemical and process engineering offers scientific tools for solving problems in the biomedical field, including drug delivery systems. This paper presents examples of analyzing the dynamics of dispersed systems (aerosols) in medical inhalers to establish a better relationship between the test evaluation results of these devices and the actual delivery of drugs to the lungs. This relationship is referred to as in vitro-in vivo correlation (IVIVC). It has been shown that in dry powder inhalers (DPls), the aerosolization process and drug release times are determined by the inhalation profile produced by the patient. It has also been shown that inspiratory flow affects the size distribution of aerosols generated in other inhalation devices (vibrating mesh nebulizers, VMNs), which is due to the evaporation of droplets after the aerosol is mixed witha dditional air taken in by the patient. The effects demonstrated in this work are overlooked in standard inhaler testing methods, leading to inaccurate information about the health benefits of aerosol therapy, thus limiting the development of improved drug delivery systems.
Go to article

Authors and Affiliations

Agata Dorosz
1
ORCID: ORCID
Arkadiusz Moskal
1
ORCID: ORCID
Tomasz R. Sosnowski
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland

This page uses 'cookies'. Learn more