Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present new results for a two-scroll 4-D hyperchaotic system with a unique saddle point equilibrium at the origin. The bifurcation and multi-stability analysis for the new hyperchaotic system are discussed in detail. As a control application, we develop a feedback control based on integral sliding mode control (ISMC) for the complete synchronization of a pair of two-scroll hyperchaotic systems developed in this work. Numerical simulations using Matlab are provided to illustrate the hyperchaotic phase portraits, bifurcation diagrams and synchronization results. Finally, as an electronic application, we simulate the new hyperchaotic system using Multisim for real-world implementations.
Go to article

Authors and Affiliations

Sundarapandian Vaidyanathan
1
Irene M. Moroz
2
Aceng Sambas
3 4

  1. Centre for Control Systems, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600092, Tamil Nadu, India
  2. Mathematical Institute, University of Oxford, Andrew Wiles Building, ROQ, Oxford Ox2 6GG, UK
  3. Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Gong Badak, 21300, Terengganu, Malaysia
  4. Department of Mechanical Engineering, Universitas MuhammadiyahTasikmalaya, Tasikmalaya 46196,West Java, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

A new 4-D dynamical system with hyperchaos is reported in this work. It is shown that the proposed nonlinear dynamical system with hyperchaos has no equilibrium point. Hence, the new dynamical system exhibits hidden hyperchaotic attractor. An in-depth dynamic analysis of the new hyperchaotic system is carried out with bifurcation transition diagrams, multistability analysis, period-doubling bubbles and offset boosting analysis. Using Integral Sliding Mode Control (ISMC), global hyperchaos synchronization results of the new hyperchaotic system are described in detail. Furthermore, an electronic circuit realization of the new hyperchaotic system has been simulated in MultiSim software version 13.0 and the results of which are in good agreement with the numerical simulations using MATLAB.

Go to article

Authors and Affiliations

Sundarapandian Vaidyanathan
Irene M. Moroz
Aceng Sambas

This page uses 'cookies'. Learn more