Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article concerns the experimental verification of the numerical model simulating the solidification and cooling processes proceeding in the domain of cast iron casting. The approximate course of the function describing the evolution of latent heat and the value of substitute specific heat resulting from its course were obtained using the thermal and derivative analysis (TDA) method The TDA was also used to measure the cooling curves at the distinguished points of the casting. The results obtained in this way were compared with the calculated cooling curves at the same points. At the stage of numerical computations, the explicit scheme of the finite difference method was applied. The agreement between the measured and calculated cooling curves is fully satisfactory.
Go to article

Bibliography

[1] Mendakiewicz, J. (2011). Identification of the solidification parameters of casting alloys on the example of grey cast iron. Monografia. Gliwice: Wyd. Pol. Śl. (in Polish).
[2] Jiji, L.M. (2009). Heat conduction. Third Edition. Springer.
[3] Mochnacki, B. & Majchrzak, E. (2007). Identification of macro and micro parameters in solidification model. Bulletin of the Polish Academy of Sciences. Technical Sciences. 55(1), 107-113.
[4] Kapturkiewicz, W. (2003). Modelling of cast iron solidification. Cracow: Akapit.
[5] Majchrzak, E., Mendakiewicz, J. & Piasecka-Belkhayat, A. (2005). Algorithm of mould thermal parameters identification in the system casting–mould–environment. Journal of Materials Processing Technology. 162-163, 1544-1549.
[6] Mochnacki, B., Suchy, J.S. (1995). Numerical methods in computations of foundry processes. Cracow: PFTA.
[7] Ciesielski, M. & Mochnacki, B. (2019). Comparison of approaches to the numerical modelling of pure metals solidification using the control volume method. International Journal of Cast Metals Research. 32(4), 213-220. https://doi.org/10.1080/13640461.2019.1607650
[8] Majchrzak, E., Mochnacki, B., Suchy, J.S (2008). Identification of substitute thermal capacity of solidifying alloy. Journal of Theoretical and Applied Mechanics. 46(2), 257-268.

Go to article

Authors and Affiliations

J. Mendakiewicz
1
ORCID: ORCID

  1. Department of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego18A, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more