Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the energy losses in big band saw machines are investigated. These losses are caused by the geometric and angular inaccuracies with which the leading wheels are made. Expressions for calculating the kinetic energy of the mechanical system in the ideal and the real cases are obtained. For this purpose, expressions for calculating the velocities of the centers of the masses in two mutually perpendicular planes are obtained. A dependence for calculation of the kinetic energy losses of the mechanical system in final form is received. Optimization procedure is used to determine the values of the parameters at which these losses have minimum values. The proposed study can be used to minimize energy losses in other classes of woodworking machines.

Go to article

Bibliography

[1] M. Sarwar, M. Persson, H. Hellbergh, and J. Haider. Measurement of specific cutting energy for evaluating the efficiency of band sawing different workpiece materials. International Journal of Machine Tools and Manufacture, 49(11-12):958–965, 2009. doi: 10.1016/j.ijmachtools.2009.06.008.
[2] M. Mandic, S. Svrzic, and G. Danon. The comparative analysis of two methods for the power consumption measurement in circular saw cutting of laminated particle board. Wood Research, 60(1):125–136, 2015.
[3] Z. Kopecký, L. Hlaskova, and K. Orlowski. An innovative approach to prediction energetic effects of wood cutting process with circular-saw blades. Wood Research, 59(5):827–834, 2014.
[4] K. Orlowski, T. Ochrymiuk, A. Atkins, and D. Chuchala. Application of fracture mechanics for energetic effects predictions while wood sawing. Wood Science and Technology, 47(5):949–963, 2013. doi: 10.1007/s00226-013-0551-x.
[5] P. Iskra, C. Tanaka, and T. Ohtani. Energy balance of the orthogonal cutting process. Holz Als Roh- und Werkstoff, 63:358–364, 2005. doi: 10.1007/s00107-005-0021-8.
[6] P. Obreshkov. Woodworking Machines. Publishing House ``BM'', 1995. (in Bulgarian).
[7] A. Pisarev, Ts. Paraskov, and C. Bachvarov. Course in Theoretical Mechanics. Second part – Dynamics. State Publishing House Technics, 1988. (in Bulgarian).
[8] R.M. Dreizler, and C.S. Lüdde. Theoretical Mechanics: Theoretical Physics 1. Springer, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-11138-9.
[9] F. Scheck. Mechanics. From Newton's Laws to Deterministic Chaos. 5th edition, Springer, Berlin, Heidelberg, 2010.
[10] B. Marinov. Dynamic and Shock Processes in Some Classes of Woodworking Machines. Analysis and Optimization. Omniscriptum Publishing Group-Germany/LAP LAMBERT Academic Publishing, 2018.
[11] B. Cheshankov. Theory of the Vibrations. Publishing House in TU, 1992. (in Bulgarian).
[12] B. Marinov. Spatial deformations in the transmissions of certain classes of woodworking machines. Mechanism and Machine Theory, 82:1–16, 2014. doi: 10.1016/j.mechmachtheory.2014.07.010.
[13] Zh. Gochev. Handbook for Exercise of Wood Cutting and Woodworking Tools. Publishing House in LTU, 2005. (in Bulgarian).
[14] Yo. Tonchev. Matlab, Part 3. Publishing House Technique, 2009. (in Bulgarian).
[15] R. Peters. Band Saw Fundamentals: The Complete Guide. Hearst Communications Inc, 2006.
[16] L. Bird. The Bandsaw Book. Taunton Press Inc, 2000.
[17] W. Turner. A Comprehensive Handbook on Uses and Applications of the Band Saw and Jig Saw. Literary Licensing LLC, 2013.
Go to article

Authors and Affiliations

Boycho Marinov
1

  1. The Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria.

This page uses 'cookies'. Learn more