Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present metrology and control methods and techniques for electromagnetically actuated microcantilevers. The electromagnetically actuated cantilevers belong to the micro electro mechanical systems (MEMS), which can be used in high resolution force and mass change investigations. In the described experiments, silicon cantilevers with an integrated Lorentz current loop were investigated. The electromagnetically actuated cantilevers were characterized using a modified optical beam deflection (OBD) system, whose architecture was optimized in order to increase its resolution. The sensitivity of the OBD system was calibrated using a reference cantilever, whose spring constant was determined through thermomechanical noise analysis registered interferometrically. The optimized and calibrated OBD system was used to observe the resonance and bidirectional static deflection of the electromagnetically deflected cantilevers. After theoretical analysis and further experiments, it was possible to obtain setup sensitivity equal to 5.28 mV/nm.
Go to article

Bibliography

[1] Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930. https://doi.org/10.1103/PhysRevLett.56.930
[2] Judy, J. W. (2001). Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Materials and Structures, 10(6), 1115–1134. https://doi.org/10.1088/0964-1726/10/6/301
[3] Algamili, A. S., Khir, M. H. M., Dennis, J. O., Ahmed, A. Y., Alabsi, S. S., Hashwan, S. S. B., & Junaid, M. M. (2021). A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Research Letters, 16(1), 1–21. https://doi.org/10.1186/s11671-021-03481-7
[4] Woszczyna, M., Gotszalk, T., Zawierucha, P., Zielony, M., Ivanow, Tzv., Ivanowa, K., Sarov, Y., Nikolov, N., Mielczarski, J., Mielczarska, E., & Rangelow, I. W. (2009). Thermally driven piezoresistive cantilevers for shear-force microscopy. Microelectronic Engineering, 86(4), 1212–1215. https://doi.org/10.1016/j.mee.2009.01.043
[5] Shen, B., Allegretto, W., Hu, M., & Robinson, A. M. (1996). CMOS micromachined cantileverin- cantilever devices with magnetic actuation. IEEE Electron Device Letters, 17(7), 372–374. https://doi.org/10.1109/55.506371
[6] Adhikari, R., Kaundal, R., Sarkar, A., Rana, P., & Das, A. K. (2012). The cantilever beam magnetometer: A simple teaching tool for magnetic characterization. American Journal of Physics, 80(3), 225–231. https://doi.org/10.1119/1.3679840
[7] Hsieh, C. H., Dai, C. L., & Yang, M. Z. (2013). Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors. Sensors, 13(11), 14728–14739. https://doi.org/10.3390/s131114728
[8] Rhoads, J. F., Kumar, V., Shaw, S. W., & Turner, K. L. (2013). The non-linear dynamics of electromagnetically actuated microbeam resonators with purely parametric excitations. International Journal of Non-Linear Mechanics, 55, 79–89. https://doi.org/10.1016/j.ijnonlinmec.2013.04.003
[9] Lee, B., Prater, C. B.,&King,W. P. (2012). Lorentz force actuation of a heated atomic force microscope cantilever. Nanotechnology, 23(5), 055709. https://doi.org/10.1088/0957-4484/23/5/055709
[10] Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491–505. https://doi.org/10.1038/nmeth.1218
[11] Hoogenboom, B. W., Frederix, P. L. T. M., Yang, J. L., Martin, S., Pellmont, Y., Steinacher, M., Zäch, S., Langenbach, E., Heimbeck, H.-J., Engel, A., & Hug, H. J. (2005). A Fabry–Perot interferometer for micrometer-sized cantilevers. Applied Physics Letters, 86(7), 074101-1. https://doi.org/10.1063/1.1866229
[12] Meyer, G., & Amer, N. M. (1988). Novel optical approach to atomic force microscopy. Applied Physics Letters, 53(12), 1045–1047. https://doi.org/10.1063/1.100061
[13] Boisen, A., Dohn, S., Keller, S. S., Schmid, S., & Tenje, M. (2011). Cantilever-like micromechanical sensors. Reports on Progress in Physics, 74(3), 036101. https://doi.org/10.1088/0034-4885/74/3/036101
[14] Gimzewski, J. K., Gerber, Ch., Meyer, E., & Schlittler, R. R. (1994). Observation of a chemical reaction using a micromechanical sensor. Chemical Physics Letters, 217(5), 589–594. https://doi.org/ 10.1016/0009-2614(93)E1419-H
[15] Wu, G., Ji, H., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M. F., Chakraborty, A. K., & Majumdar, A. (2001). Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proceedings of the National Academy of Sciences, 98(4), 1560–1564. https://doi.org/10.1073/pnas.98.4.1560 [16] Nieradka, K., Kapczynska, K., Rybka, J., Lipinski, T., Grabiec, P., Skowicki, M.,&Gotszalk, T. (2014). Microcantilever array biosensors for detection and recognition of Gram-negative bacterial endotoxins. Sensors and Actuators B: Chemical, 198, 114–124. https://doi.org/10.1016/j.snb.2014.03.023
[17] Helm, M., Servant, J. J., Saurenbach, F., & Berger, R. (2005). Read-out of micromechanical cantilever sensors by phase shifting interferometry. Applied Physics Letters, 87(6), 064101. https://doi.org/10.1063/1.2008358
[18] Putman, C. A. J., de Grooth, B. G., van Hulst, N. F., & Greve, J. (1992). A theoretical comparison between interferometric and optical beam deflection technique for the measurement of cantilever displacement in AFM. Ultramicroscopy, 42, 1509–1513. https://doi.org/10.1016/0304-3991(92) 90474-X
[19] Putman, C. A. J., de Grooth, B. G., van Hulst, N. F., & Greve, J. (1992). A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. Journal of Applied Physics, 72(1), 6–12. https://doi.org/10.1063/1.352149
[20] Hu, Z., Seeley, T., Kossek, S.,&Thundat, T. (2004). Calibration of optical cantilever deflection readers. Review of Scientific Instruments, 75(2), 400–404. https://doi.org/10.1063/1.1637457
[21] Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., & Yamada, H. (2005). Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Review of Scientific Instruments, 76(5), 053704. https://doi.org/10.1063/1.1896938
[22] Nieradka, K., Kopiec, D., Małozi˛ec, G., Kowalska, Z., Grabiec, P., Janus, P., Sierakowski, A., Domanski, K., & Gotszalk, T. (2012). Fabrication and characterization of electromagnetically actuated microcantilevers for biochemical sensing, parallel AFM and nanomanipulation. Microelectronic Engineering, 98, 676–679. https://doi.org/10.1016/j.mee.2012.06.019
[23] Miyatani, T., & Fujihira, M. (1997). Calibration of surface stress measurements with atomic force microscopy. Journal of Applied Physics, 81(11), 7099–7115. https://doi.org/10.1063/1.365306
[24] Mishra, R., Grange, W., & Hegner, M. (2012). Rapid and reliable calibration of laser beam deflection system for microcantilever-based sensor setups. Journal of Sensors, 2021, 617386. https://doi.org/10.1155/2012/617386
[25] Naeem, S., Liu, Y., Nie, H. Y., Lau, W. M., & Yang, J. (2008). Revisiting atomic force microscopy force spectroscopy sensitivity for single molecule studies. Journal of Applied Physics, 104(11), 114504. https://doi.org/10.1063/1.3037206
[26] Lee, J., Beechem, T., Wright, T. L., Nelson, B. A., Graham, S., & King, W. P. (2006). Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 15(6), 1644–1655. https://doi.org/10.1109/JMEMS.2006.886020
[27] Skwierczynski, J. M., Małozi˛ec, G., Kopiec, D., Nieradka, K., Radojewski, J., & Gotszalk, T. (2011). Radio frequency modulation of semiconductor laser as an improvement method of noise performance of scanning probe microscopy position sensitive detectors. Optica Applicata, 41(2), 323–331.
[28] Butt, H.-J., & Jaschke, M. (1995). Calculation of thermal noise in atomic force microscopy. Nanotechnology, 6(1), 1. https://doi.org/10.1088/0957-4484/6/1/001
[29] Ohler, B. (2007). Cantilever spring constant calibration using laser Doppler vibrometry. Review of Scientific Instruments, 78(6), 063701. https://doi.org/10.1063/1.2743272
[30] Cleveland, J. P., Manne, S., Bocek, D.,&Hansma, P. K. (1993).Anondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments, 64(2), 403–405. https://doi.org/10.1063/1.1144209
[31] Lévy, R., & Maaloum, M. (2002). Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology, 13(1), 33. https://doi.org/10.1088/095-4484/13/1/307
[32] Rast, S.,Wattinger, C., Gysin, U.,&Meyer, E. (2000). The noise of cantilevers. Nanotechnology, 11(3), 169. https://doi.org/10.1088/0957-4484/11/3/306
Go to article

Authors and Affiliations

Daniel Kopiec
1
Wojciech Majstrzyk
2
Bartosz Pruchnik
1
Ewelina Gacka
1
Dominik Badura
1
Andrzej Sierakowski
2
Paweł Janus
2
Teodor Gotszalk
1

  1. Wrocław University of Technology, Faculty of Microsystems Electronics and Photonics, Department of Nanometrology, Janiszewskiego 11/17, Wrocław 50-372, Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Fotonics, Lotników 32/46, Warsaw 02-668, Poland
Download PDF Download RIS Download Bibtex

Abstract

Scanning probe microscopy (SPM) since its invention in the 80’s became very popular in examination of many different sample parameters, both in university and industry. This was the effect of bringing this technology closer to the operator. Although the ease of use opened a possibility for measurements without high labour requirement, a quantitative analysis is still a limitation in Scanning ProbeMicroscopes available on the market. Based on experience of Nano-metrology Group, SPM still can be considered as a tool for quantitative examination of thermal, electrical and mechanical surface parameters. In this work we present an ARMScope platform as a versatile SPM controller that is proved to be useful in a variety of applications: fromatomic-resolution STM (Scanning TunnellingMicroscopy) toMulti-resonance KPFM (Kelvin Probe force microscopy) to commercial SEMs (Scanning electron microscopes).

Go to article

Authors and Affiliations

Bartosz Świadkowski
Tomasz Piasecki
Maciej Rudek
Michał Świątkowski
Krzysztof Gajewski
Wojciech Majstrzyk
Michał Babij
Andrzej Dzierka
Teodor Gotszalk
Download PDF Download RIS Download Bibtex

Abstract

Scanning electron microscopy (SEM) is a perfect technique for micro-/nano-object imaging [1] and movement measurement [2, 3] both in high and environmental vacuum conditions and at various temperatures ranging from elevated to low temperatures. In our view, the magnetic field expanding from the pole-piece makes it possible to characterize the behaviour of electromagnetic micro- and nano electromechanical systems (MEMS/NEMS) in which the deflection of the movable part is controlled by the electromagnetic force. What must be determined, however, is the magnetic field expanding from the e-beam column, which is a function of many factors, like working distance (WD), magnification and position of the device in relation to the e-beam column. There are only a few experimental methods for determination of the magnetic field in a scanning electron microscope. In this paper we present a method of the magnetic field determination under the scanning electron column by application of a silicon cantilever magnetometer. The micro-cantilever magnetometer is a silicon micro-fabricated MEMS electromagnetic device integrating a current loop of lithographically defined dimensions. Its stiffness can be calibrated with a precision of 5% by the method described by Majstrzyk et al. [4]. The deflection of the magnetometer cantilever is measured with a scanning electron microscope and thus, through knowing the bias current, it is possible to determine the magnetic field generated by the e-beam column in a defined position and at a defined magnification.

Go to article

Authors and Affiliations

Karolina Orłowska
Maria E. Mognaschi
Krzysztof Kwoka
Tomasz Piasecki
Piotr Kunicki
Andrzej Sierakowski
Wojciech Majstrzyk
Arkadiusz Podgórni
Bartosz Pruchnik
Paolo di Barba
Teodor Gotszalk

This page uses 'cookies'. Learn more