Search results

Filters

  • Journals
  • Date

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Resistance spotwelding is the most significant joining technique utilized in various industries, like automotive, boilers, vessels, etc., that are commonly subjected to variable tensile-shear forces due to the unsuitable use of the input spot welding variables, which mainly cause the welded joints failure during the service life of the welded assembly. So, in order to avoid such failures, the welding quality of some materials like aluminum must be improved taking into consideration the performance and weight saving of the welded structure. Thus, the need for optimizing the used welding parameters becomes essential for predicting a goodwelded joint.Accordingly, this study aims at investigating the influence of the spot welding variables, including the squeeze time, welding time, and current on the tensile-shear force of the similar and dissimilar lap joints for aluminum and steel sheets. It was concluded that the use of Taguchi design can improve the welded joints strength through designing the experiments according to the used levels of the input parameters in order to obtain their optimal values that give the optimum tensile-shear force as the response. As a consequence of the present work, the optimal spot welding parameters were successfully obtained.

Go to article

Bibliography

[1] Metals Handbook. Welding, Brazing, and Soldering, volume 6. ASM International, Materials Park, OH,1993.
[2] N. Mookam. Optimization of resistance spot brazing process parameters in AHSS and AISI 304 stainless steel joint using filler metal. Defence Technology, 15(3):450–456, 2019. doi: 10.1016/j.dt.2019.03.005.
[3] J. Valera, V. Miguel, A. Martínez, J. Naranjo, and M. Cañas.. Optimization of electrical parameters in Resistance Spot Welding of dissimilar joints of micro-alloyed steels TRIP sheets. Procedia Manufacturing, 13:291–298, 2017. doi: 10.1016/j.promfg.2017.09.074.
[4] T.R. Mahmood, Q.M. Doos, and A.M. Al-Mukhtar. Failure mechanisms and modeling of spot welded joints in low carbon mild sheets steel and high strength low alloy steel. Procedia Structural Integrity, 9:71–85, 2018. doi: 10.1016/j.prostr.2018.06.013.
[5] S.K. Hussein and O.S. Barrak. Analysis and optimization of resistance spot welding parameter of dissimilar metals mild steel and aluminum using design of experiment method. Engineering and Technology Journal, 33(8):1999–2011, 2015.
[6] Y. Lu, E. Mayton, H. Song, M. Kimchi, and W. Zhang. Dissimilar metal joining of aluminum to steel by ultrasonic plus resistance spot welding – Microstructure and mechanical properties. Materials and Design, 165:107585, 2019. doi: 10.1016/j.matdes.2019.107585.
[7] A. Subrammanian, D.B. Jabaraj, and J. Jayaprakash. Multi-objective optimization of resistance spot welding of AISI 409M ferritic stainless steel. Journal of Scientific & Industrial Research, 77:271–275, 2018.
[8] B. Vijaya Sankar, I.D. Lawrence, and S. Jayabal. Prediction of spot welding parameters for dissimilar weld joints. Bonfring International Journal of Industrial Engineering and Management Science, 6(4):123–127, 2016. doi: 10.9756/bijiems.7542.
[9] M. Pradeep, N.S. Mahesh, and R.M. Hussain. Process parameter optimization in resistance spot welding of dissimilar thickness materials. International Journal of Mechanical and Mechatronics Engineering, 8(1):80–83, 2014.
[10] M.J. Zedan and Q.M. Doos. New method of resistance spot welding for dissimilar 1008 low carbon steel-5052 aluminum alloy. Procedia Structural Integrity, 9:37–46, 2018. doi: 10.1016/j.prostr.2018.06.008.
[11] T.P. Bagchi. Taguchi Methods Explained: Practical Steps to Robust Design. Prentice-Hall, New Delhi, India 1993.
[12] M. Sarikaya. Optimization of the surface roughness by applying the Taguchi technique for the turning of stainless steel under cooling conditions. Materiali in Tehnologije/Materials and Technology, 49(6):941–948, 2015. doi: 10.17222/mit.2014.282.
[13] A.K. Hussein, L.K. Abbas, and W.N. Hasan. Optimization of heat treatment parameters for the tensile properties of medium carbon steel. Engineering and Technology Journal, 36(10A):1091–1099, 2018. doi: 10.30684/etj.36.10a.10.
[14] J. Chen, X. Yuan, Z. Hu, C. Sun, Y. Zhang, and Y. Zhang. Microstructure and mechanical properties of resistance-spot-welded joints for A5052 aluminum alloy and DP 600 steel. Materials Characterization, 120:45–52, 2016. doi: 10.1016/j.matchar.2016.08.015.
[15] Q. Jia, L. Liu, W. Guo, Y. Peng, G. Zou, Z. Tian, and Y.N. Zhou. Microstructure and tensile-shear properties of resistance spot-welded medium Mn steel. Metals, 8(1):48, 2018. doi: 10.3390/met8010048.
[16] A. Subrammanian, D.B. Jabaraj, J. Jayaprakash, and V.K. Bupesh Raja. Mechanical properties and phase transformations in resistance spot welded dissimilar joints of AISI409M/AISI301 steel. Indian Journal of Science and Technology, 9(41):1–8, 2016. doi: 10.17485/ijst/2016/v9i41/101971.
Go to article

Authors and Affiliations

Najmuldeen Yousif Mahmood
1

  1. Mechanical Engineering Department, University of Technology-Iraq, Baghdad, Iraq.

This page uses 'cookies'. Learn more