Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The one-part geopolymer binder was synthesis from the mixing of aluminosilicate material with solid alkali activators. The properties of one-part geopolymers vary according to the type and amount of solid alkali activators used. This paper presents the effect of various sodium metasilicate-to-sodium aluminate (NaAlO2/Na2SiO3) ratios on fly ash-based one-part geopolymer. The NaAlO2/Na2SiO3 ratios were set at 1.0 to 3.0. Setting time of fresh one-part geopolymer was examined through Vicat needle apparatus. Mechanical and microstructural properties of developed specimens were analysed after 28 days of curing in ambient condition. The study concluded that an increase in NaAlO2 content delayed the setting time of one-part geopolymer paste. The highest compressive strength was achieved at the NaAlO2/Na2SiO3 ratio of 2.5, which was 33.65 MPa. The microstructural analysis revealed a homogeneous structure at the optimum ratio. While the sodium aluminium silicate hydrate (N-A-S-H) and anorthite phases were detected from the XRD analysis.
Go to article

Authors and Affiliations

Ooi Wan-En
1 2
Yun-Ming Liew
1 2
ORCID: ORCID
Heah Cheng Yong
2 3
ORCID: ORCID
Ho Li-Ngee
2 4
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Ong Shee-Ween
1 2
Andrei Victor Sandu
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (UNIMAP), Center of Excellence Geopolymer and Green Technology (CEGEOGTECH), Kangar, 01000 Perlis, Malaysia
  2. Universiti Malaysia Perlis (UNIMAP), Faculty of Chemical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  3. Universiti Malaysia Perlis (UNIMAP), Faculty of Mechanical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  4. Universiti Malaysia Perlis (UNIMAP), Centre of Excellence Frontier Materials Research, FRONTMATEKANGAR, 01000 Perlis, Malaysia
  5. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, 700050, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

This paper reports on the flexural properties of thin fly ash geopolymers exposed to elevated temperature. The thin fly ash geopolymers (dimension = 160 mm × 40 mm × 10 mm) were synthesised using12M NaOH solution mixed with designed solids-to-liquids ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 and underwent heat treatment at different elevated temperature (300°C, 600°C, 900°C and 1150°C) after 28 days of curing. Flexural strength test was accessed to compare the flexural properties while X-Ray Diffraction (XRD) analysis was performed to determine the phase transformation of thin geopolymers at elevated temperature. Results showed that application of heat treatment boosted the flexural properties of thin fly ash geopolymers as the flexural strength increased from 6.5 MPa (room temperature) to 16.2 MPa (1150°C). XRD results showed that the presence of crystalline phases of albite and nepheline contributed to the increment in flexural strength.
Go to article

Authors and Affiliations

Yong-Sing Ng
1 2
Yun-Ming Liew
1 2
ORCID: ORCID
Cheng-Yong Heah
1 3
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Hui-Teng Ng
1 2
Lynette Wei Ling Chan
4

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer and Green Technology (CeGeoGTech), Kangar, 01000 Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  3. Universiti Malaysia Faculty of Mechanical Engineering Technology, Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
  4. Ceramic Research Company Sdn Bhd (Guocera-Hong Leong Group), Lot 7110, 5½ Miles, Jalan Kapar, 42100 Klang, Selangor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The flexural toughness of chopped steel wool fiber reinforced cementitious composite panels was investigated. Reinforced cementitious composite panels were produced by mixing of chopped steel wool fiber with a ratio range between 0.5% to 6.0% and 0.5% as a step increment of the total mixture weight, where the cement to sand ratio was 1:1.5 with water to cement ratio of 0.45. The generated reinforced cementitious panels were tested at 28 days in terms of load-carrying capacity, deflection capacities, post-yielding effects, and flexural toughness. The inclusion of chopped steel wool fiber until 4.5% resulted in gradually increasing load-carrying capacity and deflection capacities while, provides various ductility, which would simultaneously the varying of deflection capability in the post-yielding stage. Meanwhile, additional fiber beyond 4.5% resulted in decreased maximum load-carrying capacity and increase stiffness at the expense of ductility. Lastly, the inclusion of curves gradually.
Go to article

Bibliography


[1] Rajak D.K., Pagar D. D., Menezes P. L., and Linul E, “ Fiber-reinforced polymer composites: Manufacturing, properties, and applications”, Polymers 11: p. 1667, 2019. https://doi.org/10.3390/polym11101667
[2] Rajak D.K., Pagar D.D., Kumar R., and Pruncu C.I., “Recent progress of reinforcement materials: A comprehensive overview of composite materials”, Journal of Materials Research and Technology, 8: pp. 6354–6374, 2019. https://doi.org/10.1016/j.jmrt.2019.09.068
[3] Cejuela E., Negro V., and del Campo J.M., “Evaluation and Optimization of the Life Cycle in Maritime Works”, Sustainability 12: 4524, 2020. https://doi.org/10.3390/su12114524
[4] Pushkar S. and Ribakov Y., “Life-Cycle Assessment of Strengthening Pre-Stressed Normal-Strength Concrete Beams with Different Steel-Fibered Concrete Layers”, Sustainability 12: p. 7958. 2020. https://doi.org/10.3390/su12197958
[5] Rashiddadash P., Ramezanianpour A.A., and Mahdikhani M., “Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice”, Construction and Building Materials 51: pp. 313–320, 2014. https://doi.org/10.1016/j.conbuildmat.2013.10.087
[6] Felekoğlu B.,Türkel S.,and Altuntaş Y., “Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars”, Cement and Concrete Composites 29: pp. 391–396, 2007. https://doi.org/10.1016/j.cemconcomp.2006.12.010
[7] Abdulkareem M., Havukainen J., and Horttanainen M., “How environmentally sustainable are fibre reinforced alkali-activated concretes?”, Journal of Cleaner Production 236: p. 117601, 2019. https://doi.org/10.1016/j.jclepro.2019.07.076
[8] Zhang P., Zhao Y-N, Li Q-F, Wang P., and Zhang T.H., “Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash”, The Scientific World Journal 1–11 2014. https://doi.org/10.1155/2014/403743
[9] Faris, M.A., Abdullah, M.M.A.B., Ismail, K.N., Mortar, N.A.M., Hashim, M.F.A. and Hadi, A. “Pull-Out Strength of Hooked Steel Fiber Reinforced Geopolymer Concrete”, In IOP Conference Series: Materials Science and Engineering 55: pp. 012–080, 2019. https://doi:10.1088/1757-899X/551/1/012080
[10] Aggelis D.G., Soulioti D., Barkoula N.M., Paipetis A.S., Matikas T.E., and Shiotani T., “Acoustic emission behavior of steel fibre reinforced concrete under bending”, Construction and Building Materials 23: pp. 32–40, 2009. https://doi.org/10.1016/j.conbuildmat.2009.06.042
[11] Ragalwar K., Heard W.F., Williams B.A., Kumar D., and Ranade R., “On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement”, Cement and Concrete Composites 105: p. 103422, 2020. https://doi.org/10.1016/j.cemconcomp.2019.103422
[12] Amer, Akrm A. Rmdan, Mohd Mustafa Al Bakri Abdullah, Yun Ming Liew, Ikmal Hakem A Aziz, Jerzy J. Wysłocki, Muhammad Faheem Mohd Tahir, Wojciech Sochacki, Sebastian Garus, Joanna Gondro, and Hetham AR Amer, “Optimizing of the Cementitious Composite Matrix by Addition of Steel Wool Fibers (Chopped) Based on Physical and Mechanical Analysis”, Materials 14: p. 1094, 2021. https://doi.org/10.3390/ma14051094
[13] Sharma, A.K., Bhandari, R., Aherwar, A. and Rimašauskienė, R, “Matrix materials used in composites: A comprehensive study”, Materials Today: Proceedings 21: pp. 1559–1562, 2020. https://doi.org/10.1016/j.matpr.2019.11.086
[14] García A., Norambuena-C. J., and Partl, M.N., “A parametric study on the influence of steel wool fibers in dense asphalt concrete”, Materials and Structures 47: 1559–1571, 2014. https://doi.10.1617/s11527-013-0135-0
[15] Ponikiewski T., Katzer J., Bugdol M., and Rudzki M., “Determination of 3D porosity in steel fibre reinforced SCC beams using X-ray computed tomography”, Construction and Building Materials 68: pp. 333–340, 2014. https://doi.org/10.1016/j.conbuildmat.2014.06.064
[16] Koenig A., “Analysis of air voids in cementitious materials using micro X-ray computed tomography (µXCT)”, Construction and Building Materials 244:118313, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118313
[17] Chajec A., and Sadowski L., “The Effect of Steel and Polypropylene Fibers on the Properties of Horizontally Formed Concrete”, Materials 13: p. 5827, 2020. https://doi.org/10.3390/ma13245827
[18] Zhou S., Xie L., Jia Y., and Wang C., “Review of cementitious composites containing polyethylene fibers as repairing materials”, Polymers 12: p. 2624, 2020. https://doi.org/10.3390/polym12112624
[19] Martinelli E., Pepe M., and Fraternali F., “Meso-Scale Formulation of a Cracked-Hinge Model for Hybrid Fiber-Reinforced Cement Composites”, Fibers 8: p. 56, 2020. https://doi.org/10.3390/fib8090056
[20] Zhou H., Jia B., Huang H., and Mou Y., “Experimental study on basic mechanical properties of basalt fiber reinforced concrete “, Materials (Basel) 13: p. 1362, 2020. https://doi.org/10.3390/ma13061362
Go to article

Authors and Affiliations

Akrm A. Rmdan Amer
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
Yun Ming Liew
2
ORCID: ORCID
Ikmal Hakem A. Aziz
1
ORCID: ORCID
Muhammad Faheem Mohd Tahir
2
Shayfull Zamree Abd Rahim
3
ORCID: ORCID
Hetham A.R. Amer
4
ORCID: ORCID

  1. Geopolymer & Green Technology, Center of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
  2. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Malaysia
  3. Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
  4. Omar Al-Mukhtar Universiti, Civil Engineering Department, Libya

This page uses 'cookies'. Learn more