Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research of metallic glass based on a Mg72Zn24Ca4 alloy. Metallic glass was prepared using induction melting and further injection on a spinning copper wheel. The X-ray diffractometer and differential scanning calorimeter (DSC) were used to investigate the phase transformation of the amorphous ribbon. The heat released in the crystallization process, during isothermal annealing, based on the differential scanning calorimeter investigation, was determined to be 166.18 Jg-1. The effect of isothermal annealing temperature on the kinetics of the amorphous alloy crystallization process using differential scanning calorimeter was investigated. For this purpose, two isothermal annealing temperatures were selected. The incubation time decreases as the temperature of the isothermal annealing increases from 300 to 252 seconds. The same relationship is visible in the case of duration of the phase transformation, which also decreases as the temperature of the isothermal annealing increases from 360 to 228 seconds. The obtained results show a significant influence of isothermal annealing temperature on the degree of phase transformation.

Go to article

Authors and Affiliations

J. Lelito
Download PDF Download RIS Download Bibtex

Abstract

The influence of the hold time of the austempering heat treatment at 280°C on the microstructure and corrosion resistance in NaCl-based media of austempered ductile iron was investigated using X-ray diffraction, micro-hardness measurements, corrosion tests and surface observations. Martensite was only found in the sample which was heat treated for a short period (10 minutes). Corrosion tests revealed that this phase does not play any role in the anodic processes. Numerous small pits were observed in the α-phase which is the precursor sites in all samples (whatever the value of the hold time of the austempering heat treatment).

Go to article

Authors and Affiliations

H. Krawiec
V. Vignal
J. Lelito
A. Krystianiak
E. Tyrała
Download PDF Download RIS Download Bibtex

Abstract

A determination of the heating degree of the moulding sand with bentonite on the grounds of simulating investigations with the application of the MAGMA program, constitutes the contents of the paper. To this end the numerical simulation of the temperature distribution in the virtual casting mould was performed. It was assumed that the mould cavity was filled with a moulding sand with bentonite of a moisture content 3,2 % and bentonite content 8 %. A computer simulation can be used for predicting the heating degree of moulding sands with bentonite. Thus, prediction of the active bentonite (montmorillonite) content in individual layers of the overheated moulding sand can be done by means of the simulation. An overheating degree of a moulding sand with bentonite, and thus the bentonite deactivation depends on a temperature of a casting alloy, casting mass, ratio of: masssand : masscasting, moulding sand amount in the mould and contact area: metal – mould (geometry of the casting shape). Generally it can be stated, that the bentonite deactivation degree depends on two main factors: temperature of moulding sand heating and time of its operation.

Go to article

Authors and Affiliations

M. Holtzer
R. Dańko
S. Żymankowska-Kumon
J. Lelito
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is to develop a numerical model capable of predicting the grain density in the Mg-based matrix phase of an AZ91/SiC composite, as a function of the total mass fraction of the embedded SiC particles. Based on earlier work in a range of alloy systems, we assume an exponential relationship between the grain density and the maximum supercooling during solidification. Analysis of data from cast samples with different thicknesses, and mass fractions of added SiCp, permits conclusions to be drawn on the role of SiCp in increasing grain density. By fitting the data, an empirical nucleation law is derived that can be used in a micro model. Numerical simulation based on the model can predict the grain density of magnesium alloys containing SiC particles, using the mass fraction of the particles as inputs. These predictions are compared with measured data.

Go to article

Authors and Affiliations

J. Lelito
H. Krawiec
V. Vignal
B. Gracz
P.L. Żak
M. Szucki
Download PDF Download RIS Download Bibtex

Abstract

The article presents research aimed at determining the effect of adding rare earth elements to near-eutectic Al-Si and Al-Si-Ni alloys on the microstructure and mechanical properties of the obtained products. Material for the research was prepared using a melt spinner – a device used for rapid crystallization, casting thin ribbons, which were then subjected in subsequent stages to fragmentation, consolidation and plastic working. The ribbons and extruded rods cast were described in terms of their structure and their strength properties were determined at different measurement temperatures. It was shown that the lightweight materials produced from aluminium alloys using the rapid solidification process have an ultra-fine structure and good strength properties.

Analysis under a microscope confirmed that the addition of rare earth alloys Al-Si and Al-Si-Ni causes fragmentation of the microstructure in the tapes produced. The presence of rare earth elements in the alloys tested has an impact on the type and the morphology of the particles of the microstructure’s individual components. In addition to the change in particle morphology, the phenomenon of the separation of numerous nanometric particles of intermetallic phases containing rare earth elements was also observed. The change in microstructure caused by the addition of rare earth elements in the form of a mischmetal increases the mechanical properties.

Go to article

Authors and Affiliations

D. Kapinos
M. Szymanek
B. Augustyn
ORCID: ORCID
S. Boczkal
ORCID: ORCID
W. Szymański
T. Tokarski
ORCID: ORCID
J. Lelito

This page uses 'cookies'. Learn more